Какой системы счисления не существует. Древнеиндийские системы счисления. Смешанная система счисления

Изучив эту тему, вы узнаете и повторите:

Какие системы счисления существуют;
- как осуществляется перевод чисел из одной системы счисления в другую;
- с какими системами счисления работает компьютер;
- как представляются различные числа в памяти компьютера.

С древнейших времён перед людьми стояла проблема обозначения (кодирования) числовой информации.

Маленькие дети показывают свой возраст на пальцах. Лётчик сбил самолёт, ему за это рисуют звёздочку, Робинзон Крузо считал дни зарубками.

Числом обозначали некоторые реальные объекты, свойства которых были одинаковы. Когда мы что-то считаем или пересчитываем, мы как бы обезличиваем предметы, т.е. подразумеваем, что их свойства одинаковы. Но самым главным свойством числа является наличие объекта, т.е. единица и его отсутствие, т.е. ноль.

Что такое цифра?

Это алфавит чисел, набор символов, с помощью которых мы кодируем числа. Цифры – числовой алфавит.

Цифры и числа – это разные вещи! Рассмотрим два числа 5 2 и 2 5. Цифры одни и те же – 5 и 2.

А чем эти числа отличаются?

Порядком цифр? – Да! Но лучше сказать - позицией цифры в числе.

Давайте подумаем, что же это такое системы счисления?

Это запись чисел? Да! Но мы не можем писать так, как нам вздумается - нас должны понимать другие люди. Поэтому необходимо ещё использовать и определенные правила их записи.

Понятие системы счисления

Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Система счисления - это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных - не зависит.

Непозиционные системы счисления возникли раньше позиционных, поэтому рассмотрим сначала различные непозиционные системы счисления.

Непозиционные системы счисления

Непозиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры не зависит от ее местоположения в записи числа.

К непозиционным системам относятся: римская система счисления, алфавитные системы счисления и другие.

Сначала люди просто различали ОДИН предмет перед ними или нет. Если предмет был не один, то говорили «МНОГО».

Первыми понятиями математики были "меньше", "больше", "столько же".

Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Счет появился тогда, когда человеку потребовалось сообщать своим соплеменникам о количестве найденных им предметов.

И, так как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.

Имена числительные во многих языках указывают, что у первобытного человека орудием счета были преимущественно пальцы.

Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки, то и до 10. В древние времена люди ходили босиком. Поэтому они могли пользоваться для счета пальцами как рук, так и ног. До сих пор существуют в Полинезии племена, использующие с 20-ую систему счисления.

Однако известны народы, у которых единицами счёта были не пальцы, а их суставы.

Довольно широкое распространение имела двенадцатеричная система счисления. Происхождение её связано со счетом на пальцах. Считали большим пальцем руки фаланги остальных четырёх пальцев: всего их 12.

Элементы двенадцатеричной системы счисления сохранились в Англии в системе мер (1 фут = 12 дюймам) и в денежной системе (1 шиллинг = 12 пенсам). Нередко и мы сталкиваемся в быту с двенадцатеричной системой счисления: чайные и столовые сервизы на 12 персон, комплект носовых платков - 12 штук.

Числа в английском языке от одного до двенадцати имеют свое название, последующие числа являются составными:

Для чисел от 13 до 19 -- окончание слов -- teen. Например, 15 -- fiveteen.

Пальцевой счет сохранился кое-где и поныне. Например, на крупнейшей мировой хлебной бирже в Чикаго предложения и запросы, как и цены объявляются маклерами на пальцах без единого слова.

Запоминать большие числа было трудно, поэтому к «счетной машине» рук и ног стали добавлять различные приспособления. Появилась потребность в записи чисел.

Количество предметов изображалось нанесением черточек или засечек на какой-либо твердой поверхности: камне, глине…

Единичная («палочная») система счисления

Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждому объекту в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу. Перуанцы употребляли для запоминания чисел разноцветные шнуры с завязанными на них узлами. Интересный способ для записи чисел использовался индийскими цивилизациями примерно в VIII веке до новой эры. Они применяли «узелковое письмо» - связанные между собой нити. Знаками на этих нитях служили узелки, часто с вплетенными в них камнями или ракушками. Узелковая запись чисел позволяла Инкам передавать информацию о числе воинов, обозначать количество умерших или родившихся в той или иной провинции и так далее.


Около 1100 года н. э. английский король Генрих I изобрел одну из самых необычных денежных систем в истории, названную системой «мерных реек». Эта денежная система продержалась 726 лет и была отменена в 1826 году.

Деревянная полированная рейка с зарубками, обозначающими номинал, расщеплялась по всей длине так, чтобы сохранить зарубки.

Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

Древнеегипетская десятичная система счисления (2,5 тысяч лет до н.э.)

Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки - иероглифы.

Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной и аддитивной.

Записывались цифры числа начиная с больших значений и заканчивая меньшими. Если десятков, единиц, или какого-то другого разряда не было, то переходили к следующему разряду.

Попробуйте сложить эти два числа, зная, что более 9 одинаковых иероглифов использовать нельзя, и вы сразу поймете, что для работы с этой системой нужен специальный человек. Обычному человеку это не под силу.

Римская десятичная система счисления (2 тысячи лет до н.э. и до наших дней)

Самой распространенной из непозиционных систем счисления является римская система.

Главная проблема с римскими цифрами заключается в том, что сложно производить умножение и деление. Другим недостатком римской системы является: Запись больших чисел требует введения новых символов. А дробные числа можно записывать только как отношение двух чисел. Тем не менее, они были основными до конца средних веков. Но и в наше время их ещё используют.

Вспомните где?

Значение цифры не зависит от ее положения в числе.

Например, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30.

Величина числа в римской системе счисления определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется.

Запомните: 5, 50, 500 не повторяются!

А какие могут повторяться?

Если слева от старшей цифры стоит младшая, то она отнимается. Если младшая цифра стоит справа от старшей, то она прибавляется - I, X, C, M могут повторяться до 3-х раз.

Например:

1) MMIV = 1000+1000+5-1 = 2004

2) 149 = (Сто - C, сорок - XL, а девять - IX) = CXLIX

Например, запись десятичного числа 1998 в римской системе счисления будет выглядеть следующим образом: МСМХСVIII = 1000 + (1000 - 100) + (100 - 10) + 5 + 1 + 1 + 1.

Алфавитные системы счисления
Славянская кириллическая десятеричная алфавитная

Эта нумерация была создана вместе со славянской алфавитной системой для перевода священных библейских книг для славян греческими монахами братьями Кириллом и Мефодием в IX веке. Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел. До XVII века эта форма записи чисел была официальной на территории современной России, Белоруссии, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор православные церковные книги используют эту нумерацию.

Числа записывали из цифр так же слева, направо, от больших к меньшим. Числа от 11 до 19 записывались двумя цифрами, причем единица шла перед десятком:

Читаем дословно "четырнадцать" - "четыре и десять". Как слышим, так и пишем: не 10+4, а 4+10, - четыре и десять. Числа от 21 и выше записывались наоборот, сначала писали знак полных десятков.

Запись числа, использованная славянами аддитивная, то есть в ней используется только сложение:

= 800+60+3

Для того чтобы не перепутать буквы и цифры, использовались титла - горизонтальные черточки над числами, что мы видим на рисунке.

Для обозначения чисел больших, чем 900 использовались специальные значки, которые дорисовывались к букве. Так образовывались числа:

Славянская нумерация просуществовала до конца XVII столетия, пока с реформами Петра I в Россию из Европы не пришла позиционная десятичная система счисления.

Древнеиндийские системы счисления

Система счисления кхарошти имела хождение в Индии между VI веком до нашей эры и III веком нашей эры. Эта была непозиционная аддитивная система счисления. О ней мало что известно, так как сохранилось мало письменных документов той эпохи. Система кхарошти интересна тем, что в качестве промежуточного этапа между единицей и десятью выбирается число четыре. Числа записывались справа налево.

Наряду с этой системой существовала в Индии еще одна система счисления брахми.

Числа брахми записывались слева направо. Однако в обеих системах было не мало общего. В частности первые три цифры очень похожи. Общим было то, что до сотни применялся аддитивный способ, а после мультипликативный. Важным отличием цифр брахми, было то, что цифры от 4 до 90, были представлены только одним знаком. Эта особенность цифр брахми в дальнейшем была использована при создании в Индии позиционной десятичной системы.

В древней Индии так же была словесная система счисления. Она была мультипликативная, позиционная. Знак нуля произносился как «пустое», или «небо», или «дыра». Единица как «луна», или «земля». Двойка как «близнецы», или «глаза», или «ноздри», или «губы». Четыре как «океаны», «стороны света». Например, число 2441 произносилось так: глаза океанов стороны света луны.

Недостатки непозиционных систем счисления:

1. Существует постоянная потребность введения новых знаков для записи больших чисел.

2. Невозможно представлять дробные и отрицательные числа.

3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. В частности, у всех народов наряду с системами счисления были способы пальцевого счета, а у греков был счетная доска абак – что-то наподобие наших счетов.

Вплоть до конца средневековья не существовало никакой универсальной системы записи чисел. Только с развитием математики, физики, техники, торговли, финансовой системы возникла потребность в единой универсальной системе счисления, хотя и сейчас многие племена, нации и народности используют другие системы счисления.

Но мы до сих пор пользуемся элементами непозиционной системы счисления в обыденной речи, в частности, мы говорим сто, а не десять десятков, тысяча, миллион, миллиард, триллион.

Позиционные системы счисления

Позиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры зависит от ее местоположения в записи числа.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления - количество различных цифр, используемых для изображения чисел в данной системе счисления.

За основание можно принять любое натуральное число - два, три, четыре, ..., образовав новую позиционную систему: двоичную, троичную, четверичную и... т.д.

Вавилонская десятеричная / шестидесятеричная

В древнем Вавилоне примерно во II тысячелетие до нашей эры была такая система счисления - числа менее 60 обозначались с помощью двух знаков: для единицы, и для десятка. Они имели клинообразный вид, так как вавилоняне писали на глиняных табличках палочками треугольной формы. Эти знаки повторялись нужное число раз, например

Считается, что десятичная система была у шумеров, а после того как их завоевали семиты, их система была приспособлена под шестидесятеричную систему семитов.

Шестидесятеричная запись целых чисел не получила широкого распространения за пределами Ассиро-вавилонского царства, но шестидесятеричные дроби применяются до сих пор при измерении времени. Например, одна минута = 60 секунд, один час = 60 минут.

Древнекитайская десятеричная

Эта система одна из старейших и самых прогрессивных, поскольку в нее заложены такие же принципы, как и в современную «арабскую», которой мы с Вами пользуемся. Возникла эта система около 4 000 тысяч лет тому назад в Китае.

Числа в этой системе, так же как и у нас записывались слева направо, от больших к меньшим. Если десятков, единиц, или какого-то другого разряда не было, то сначала ничего не ставили и переходили к следующему разряду. (Во времена династии Мин был введен знак для пустого разряда - кружок - аналог нашего нуля). Чтобы не перепутать разряды использовали несколько служебных иероглифов, писавшихся после основного иероглифа, и показывающих какое значение принимает иероглиф-цифра в данном разряде.

Эта мультипликативная запись, так как в ней используется умножение. Она десятичная, в ней есть знак нуля, кроме этого она позиционная. Т.е. она почти соответствует «арабской» системе счисления.

Двадцатеричная система счисления индейцев Майя или долгий счет

Эта система очень интересна тем, что на ее развитие не повлияла ни одна из цивилизаций Европы и Азии. Эта система применялась для календаря и астрономических наблюдений. Характерной особенностью ее было наличие нуля (изображение ракушки). Основанием этой системы было число 20, хотя сильно заметны следы пятеричной системы. Первые 19 чисел получались путем комбинирование точек (один) и черточек (пять).

Число 20 изображалось из двух цифр, ноль и один наверху и называлось уиналу. Записывались числа столбиком, внизу располагались наименьшие разряды, вверху наибольшие, в результате получалась «этажерка» с полками. Если число ноль появлялось без единицы наверху, то это обозначало, что единиц данного разряда нет. Но, если хоть одна единица была в этом разряде, то знак нуля исчезал, например, число 21, это будет . Так же в нашей системе счисления: 10 – с нулем, 11 – без него. Вот несколько примеров чисел:

В двадцатеричной системе счета древних майя есть исключение: стоит прибавить к числу 359 только одну единицу первого порядка, как это исключение немедленно вступает в силу. Суть его сводится к следующему: 360 является начальным числом третьего порядка и его место уже не на второй, а на третьей полке.

Но тогда выходит, что начальное число третьего порядка больше начального числа второго не в двадцать раз (20x20=400, а не 360!), а только в восемнадцать! Значит, принцип двадцатеричности нарушен! Все верно. Это и есть исключение.

Дело в том, что у индейцев Майя 20 дней-кинов образовывали месяц или уинал. 18 месяцев-уиналов образовывали год или туну (360 дней в году) и так далее:

К"ин = 1 день. Виналь = 20 к"ин = 20 дней. Тун = 18 виналь = 360 дней = около 1 года. К"атун = 20 тун = 7200 дней = около 20 лет. Бак"тун = 20 к"атун = 144000 дней = около 400 лет. Пиктун = 20 бак"тун = 2880000 дней = около 8000 лет. Калабтун = 20 пиктун = 57 600 000 дней = около 160000 лет. К"инчильтун = 20 калабтун = 1152000000 дней = около 3200000 лет. Алавтун = 20 к"инчильтун = 23040000000 дней = около 64000000 лет.

Это довольно сложная система счисления, в основном использовалась жрецами для астрономических наблюдений, другая система индейцев Майя была аддитивной, похожей на египетскую и применялась в повседневной жизни.

История «арабских» чисел.

История наших привычных «арабских» чисел очень запутана. Нельзя сказать точно и достоверно как они произошли. Вот один из вариантов этого истории этого происхождения. Одно точно известно, что именно благодаря древним астрономам, а именно их точным расчетам мы и имеем наши числа.

Как мы уже знаем, в вавилонской системе счисления присутствует знак для обозначения пропущенных разрядов. Примерно во II веке до н.э. с астрономическими наблюдениями вавилонян познакомились греческие астрономы (например, Клавдий Птолемей). Они переняли их позиционную систему счисления, но целые числа они записывали не с помощью клиньев, а в своей алфавитной нумерации, а дроби в вавилонской шестидесятеричной системой счисления. Но для обозначения нулевого значения разряда греческие астрономы стали использовать символ "0" (первая буква греческого слова Ouden - ничто).

Между II и VI веками н.э. индийские астрономы познакомились с греческой астрономией. Они переняли шестидесятеричную систему и круглый греческий нуль. Индийцы соединили принципы греческой нумерации с десятичной мультипликативной системой взятой из Китая. Так же они стали обозначать цифры одним знаком, как было принято в древнеиндийской нумерации брахми. Это и был завершающий шаг в создании позиционной десятичной системы счисления.

Блестящая работа индийских математиков была воспринята арабскими математиками и Аль-Хорезми в IX веке написал книгу "Индийское искусство счета", в которой описывает десятичную позиционную систему счисления. Простые и удобные правила сложения и вычитания сколь угодно больших чисел, записанных в позиционной системе, сделали ее особенно популярной в среде европейских купцов.

В XII в. Хуан из Севильи перевел на латынь книгу "Индийское искусство счета", и индийская система счета широко распространилась по всей Европе. А так как труд Аль-Хорезми был написан арабском языке, то за индийской нумерацией в Европе закрепилось неправильное название - "арабская". Но сами арабы именуют цифры индийскими, а арифметику, основанную на десятичной системе - индийским счетом.

Форма «арабских» цифр со временем сильно изменялась. Та форма, в которой мы их пишем, установилась в XVI веке.

Даже Пушкин предложил свой вариант формы арабских чисел. Он решил, что все десять арабских цифр, включая нуль, помещаются в магическом квадрате.


Десятичная позиционная система счисления

Индийские ученые сделали одно из важнейших в математике открытий - изобрели позиционную систему счисления, которой теперь пользуется весь мир. Ал-Хорезми подробно описал индийскую арифметику в своей книге.

Мухаммед бен Муса ал-Хорезм

Приблизительно в 850 году н.э. он написал книгу об общих правилах решения арифметических задач при помощи уравнений. Она называлась "Китаб ал-Джебр". Эта книга дала имя науке алгебре.

Триста лет спустя (в 1120 г.) эту книгу перевели на латинский язык, и она стала первым учебником "индийской" арифметики для всех европейских городов.

История нуля.

Нуль бывает разный. Во-первых, нуль – это цифра, которая используется для обозначения пустого разряда; во-вторых, нуль – это необычное число, так как на нуль делить нельзя и при умножении на нуль любое число становиться нулем; в-третьих, нуль нужен для вычитания и сложения, иначе, сколько будет, если из 5 вычесть 5?

Впервые нуль появился в древневавилонской системе счисления, он использовался для обозначения пропущенных разрядов в числах, но такие числа как 1 и 60 у них записывали одинаково, так как нуль в конце числа у них не ставился. В их системе нуль выполнял роль пробела в тексте.

Изобретателем формы нуля можно считать великого греческого астронома Птолемея, так как в его текстах на месте знака пробела стоит греческая буква омикрон, очень напоминающая современный знак нуля. Но Птолемей использует нуль в том же смысле, что и вавилоняне. На стенной надписи в Индии в IX веке н.э. впервые символ нуля встречается в конце числа. Это первое общепринятое обозначение современного знака нуля. Именно индийские математики изобрели нуль во всех его трех смыслах. Например, индийский математик Брахмагупта еще в VII века н.э. активно стал использовать отрицательные числа и действия с нулем. Но он утверждал, что число, деленное на нуль, есть нуль, что конечно ошибка, но настоящая математическая дерзость, которая привела к другому замечательному открытию индийских математиков. И в XII веке другой индийский математик Бхаскара делает еще попытку понять, что же будет при делении на нуль. Он пишет: "количество, деленное на нуль, становится дробью, знаменатель которой равен нулю. Эту дробь называют бесконечностью".

Леонардо Фибоначчи, в своем сочинении "Liber abaci" (1202) называет знак 0 по-арабски zephirum. Слово zephirum – это арабское слово as-sifr, которое произошло от индийского слова sunya, т. е. пустое, служившего названием нуля. От слова zephirum произошло французское слово zero (нуль) и итальянское слово zero. С другой стороны, от арабского слова as-sifr произошло русское слово цифра. Вплоть до середины XVII века это слово употреблялось специально для обозначения нуля. Латинское слово nullus (никакой) вошло в обиход для обозначения нуля в XVI веке.

Нуль - это уникальный знак. Нуль – это чисто абстрактное понятие, одно из величайших достижений человека. Его нет в природе окружающей нас. Без нуля можно спокойно обойтись в устном счете, но невозможно обойтись для точной записи чисел. Кроме этого, нуль находится в противовесе всем остальным числам, и символизирует собой бесконечный мир. И если “все есть число”, то ничто есть все!

Основания, используемые в наши дни:

10 - привычная десятичная система счисления (десять пальцев на руках). Алфавит: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

60 - придумано в Древнем Вавилоне: деление часа на 60 минут, минуты - на 60 секунд, угла - на 360 градусов.

12 - распространили англосаксы: в году 12 месяцев, в сутках два периода по 12 часов, в футе 12 дюймов

7 - используется для счета дней недели

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

Что это значит?

Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

Непозиционные системы

К непозиционным системам счисления относятся:

  1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
  2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
  3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
  4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
  5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

Позиционные системы

Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

  • двоичная;
  • восьмеричная;
  • десятичная;
  • шестнадцатеричная;
  • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

Десятичная система

Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

Двоичная система

Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

Восьмеричная система

Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

Двоично-десятичная система

Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

Шестнадцатеричная система

В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

Перевод чисел: из десятичной в двоичную

Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

Например, переведем число 9 в двоичную систему:

Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

Проводим ту же операцию с 2. В остатке получаем 0.

В итоге деления у нас получается 1.

Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

Перевод чисел: из двоичной в десятичную

Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

Для школьников этот алгоритм можно объяснить проще:

Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

Выглядеть это будет следующим образом:

1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

Другие варианты перевода

В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

Арифметические операции

Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЗВА УЧБОВОГО ЗАКЛАДУ

Разновидности систем счисления

Понятие системы счисления. Виды систем счисления

Система счисления -- совокупность нескольких названий и знаков, позволяющая записать любое число и дать ему имя.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на:

· Позиционные;

· Непозиционные;

· Смешанные.

Позиционные системы счисления

Позиционная система счисления -- это система, в которой значение каждой цифры зависит от ее числового эквивалента и от ее места (позиции) в числе, т.е. один и тот же символ (цифра) может принимать различные значения.

Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам. Развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

Наиболее известной позиционной системой счисления является десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Любая позиционная система счисления характеризуется основанием. Основание или базис (n) естественной позиционной системы счисления -- это количество знаков или символов, используемых для изображения числа в данной системе. Поэтому, возможно бесчисленное множество позиционных систем, т.к. за основание можно принять любое натуральное число n>1, образовав новую систему счисления.

Когда представляют или записывают, некоторое число в позиционной системе счисления, размещают соответствующие цифры числа по отдельным нужным позициям, которые принято называть разрядами числа в данной позиционной системе счисления. Количество разрядов в записи числа называется разрядностью числа и совпадает с его длиной.

Общая система счисления может быть определена, как такая группировка целых и дробных чисел, при которой каждое из них представляется формулой:

где x -- произвольное число, записанное в системе счисления с основанием n; символ ai -- коэффициент ряда, т.е. i-таю цифра записи числа; k, m -- количество целых и дробных разрядов соответственно.

Каждая степень nk в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k (номера разряда). Номера разрядов в позиционной системе счисления отсчитываются в целой части влево от запятой, а в дробной -- вправо от запятой. Причем, нумерация разрядов начинается с 0. Величина основания позиционной системы счисления определяет ее название: для десятичной системы это будет 10, для восьмеричной -- 8, для двоичной -- 2 и т.д. Обычно вместо названия системы счисления используют термин "код числа". Например, под понятием двоичный код подразумевается число, представленное в двоичной системе счисления, под понятием десятичный код - в десятичной системе счисления и т.д.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x записывают в виде последовательности его n-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Наиболее употребляемыми в настоящее время позиционными системами являются:

· 2 -- двоичная (в дискретной математике, информатике, программировании);

· 3 -- троичная (в троичных ЭВМ (например, «Сетунь»));

· 8 -- восьмеричная (используется в программировании, информатике);

· 10 -- десятичная (используется повсеместно);

· 12 -- двенадцатеричная (счёт дюжинами);

· 16 -- шестнадцатеричная (используется в программировании, информатике);

· 60 -- шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Двоичная система счисления -- позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах. В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b, например 0b101.

Правила переводов

Перевод из любой системы счисления в десятичную систему счисления

Для перевода целого числа из любой системы счисления в десятичную, необходимо записать данное число в общем виде:

anbn+an-1bn-1+an-2bn-2+...+a2b2+a1b1+a0b0

Например: переведем число 12568 в десятичную систему счисления.

12568=1·83 +2·82 +5·81 +6·80 =1·512+2·64+5·8+6·1=68610.

Перевод числа из десятичной системы счисления в другую систему

1) Делим данное число на основание той системы, в которую необходимо перевести число.

2) Полученное число делим аналогично на основание системы, в которую необходимо перевести число.

3) Пункт 2 повторяем до тех пор пока, полученное частное не будет меньше основания.

4) Выписываем остатки от деления в порядке от последнего к первому.

Правило перевода чисел из двоичной системы счисления в восьмеричную

1) Разбиваем число по три цифры на группы начиная с младшего разряда.

Если не хватает до целой тройки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную тройку цифр заменяем цифрой из восьмеричной системы счисления.

Двоичные триады

Восьмеричные цифры

3) Дробную часть разбиваем на тройки вправо от запятой.

Перевод чисел из двоичной системы счисления в шестнадцатеричную

1) Разбиваем число по четыре цифры на группы начиная с младшего разряда.

Если не хватает до целой четверки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную четверку цифр заменяем цифрой из восьмеричной системы счисления.

3) Дробную часть разбиваем на четверки вправо от запятой.

Если не хватает цифр, то приписываем нули справа.

Правило перевода чисел из восьмеричной системы счисления в двоичную

1) Заменяем каждую цифру данного восьмеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной тройки не хватает цифр, то в данной тройке добавляем недостающее количество нулей слева.

Перевод чисел из шестнадцатеричной системы счисления в двоичную

1) Заменяем каждую цифру данного шестнадцатеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной четверки не хватает цифр, то в данной четверке добавляем недостающее количество нулей справа.

Необычные позиционные системы счисления

Необычные счисления не находят широкого применения, однако они могут быть интересными с точки зрения теории. Среди необычных систем счисления можно выделить: счисление позиционный символический знак

· системы счисления с ненатуральными основаниями

o отрицательными,

o иррациональными,

o комплексными (напр.: 1 + i);

· системы счисления с несколькими основаниями;

o вложенными (двоично-десятичная, десятично-шестидесятеричная и др.)

· системы счисления с нестандартными наборами цифр:

с набором цифр, симметричным относительно нуля.

Системы счисления с отрицательными основаниями

Отрицательные основания позволяют выражать отрицательные числа без введения дополнительного символа для знака. Для выражения чисел используется тот же набор цифр, что и для системы с равным по модулю натуральным основанием. Таким образом, нечётные разряды числа имеют отрицательный вес.

Системы счисления с иррациональным основанием

Иррациональное число вида можно выразить в системе счисления с иррациональным основанием, употребив цифры.

Системы счисления с комплексным основанием

Подобно системам с отрицательным основаниям, комплексные основания позволяют выражать комплексные числа.

Для этого основание системы счисления берётся вида:

удовлетворяющее условию -- количество цифр в наборе.

Системы основания с вложенными основаниями

Если цифры системы счисления с большим основанием представить числами в системе счисления с меньшим основанием, то получится особый составной род системы счисления.

Хорошо известна десятично-шестидесятеричная система счисления, используемая для измерения времени -- часы, минуты и секунды, записанные десятичной системой здесь предстают в качестве разрядов шестидесятеричной системы счисления. Эта система пришла из Вавилона, где широко использовалась для записи чисел шестидесятеричная система, основанная всего на трёх клинописных символах:

· вертикльный клин -- единица разряда;

· уголок из клиньев -- десяток разряда;

· наклонный клин -- нуль, пустой разряд;

Двоично-десятичная система счисления используется в вычислительной технике. Двоичные разряды группируются по четыре, где каждая четвёрка (тетрада, ниббл) кодирует одну десятичную цифру. Это позволяет работать с приборами, имеющими десятичную индикацию и ввод без преобразования систем счисления.

Нестандартные наборы цифр, наборы, симметричные относительно нуля

Альтернативным способом записи отрицательных чисел без использования знака минуса (кроме отрицательных оснований) является использование цифр с отрицательным весом. При этом не требуется увеличения количества различных цифр для записи числа -- вместо набора можно использовать любой набор вида.

Замечательным в этом отношении является использование симметричного набора цифр. Если взять систему счисления с нечётным основанием вида 2p + 1, то набор цифр будет иметь вид.

Такой подход нашёл применение в троичных ЭВМ (например, «Сетунь»).

Смешанная система счисления

Смешанная система счисления является обобщением n-ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел, и каждое число в ней представляется как линейная комбинация:

В зависимости от вида ni как функции смешанные системы счисления могут быть степенными, показательными, факториальными, фибоначчиевыми и т. п. Когда для некоторого n, смешанная система счисления совпадает с показательной n-ричной системой счисления.

Самый яркий пример смешанной системы счисления -- это представление времени в виде количества суток, часов, минут и секунд. При этом величина «d дней, h часов, m минут, s секунд» соответствует значению

Непозиционные системы счисления

Непозиционная система счисления -- это система, для которой значение символа, т.е. цифры, не зависит от его положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

В биномиальной системе счисления число x представляется в виде суммы биномиальных коэффициентов:

При всяком фиксированном значении n каждое натуральное число представляется уникальным образом.

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов, где

СОК гарантирует однозначность представления для чисел из отрезка

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК.

Исторические системы счисления

Единичная система счисления

Хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком -- так возникают прообразы будущих цифр.

Пятеричная система счисления (Счёт на пятки м)

Существовал в России. Применялся в народе как минимум до конца XVIII -- начала XIX вв.

Древнеегипетская система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:

I обозначает 1,

Римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё.

Система счисления майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом 17 19 сразу следовало число 1 0 0. Это было сделано для облегчения расчётов календарного цикла, поскольку 1 0 0 = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I--II тысячелетии н. э., была узелковая письменность Инков -- кипу, состоявшая как из числовых записей десятичной системы, так и не числовых записей в двоичной системе кодирования. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись.

Список используемой литературы

1. А. Г. Цыпкин. "Справочник по математике для средних учебных заведений"

Размещено на Allbest.ru

...

Подобные документы

    Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация , добавлен 10.11.2010

    Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат , добавлен 09.07.2009

    Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа , добавлен 04.11.2013

    Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация , добавлен 15.04.2015

    Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа , добавлен 29.04.2017

    Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат , добавлен 25.12.2014

    История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа , добавлен 21.06.2010

    Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация , добавлен 30.09.2012

    Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация , добавлен 20.06.2011

    Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называются цифрами.

В непозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числаq .q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа вq -ичной системе счисления требуетсяq различных знаков (цифр), изображающих числа 0, 1, ...,q – 1. Запись числаq вq -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основаниемq :X = (a n a n-1 a 1 a 0) q . Нужно найти значащие цифры числа:. Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0 есть остаток от деления числаX на числоq . Выражение в скобках - целое частное от этого деления. Обозначим его заX 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деленияX 1 наq . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифраan в этой цепочке делений будет последним частным, меньшимq .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основаниемq :X = (0,a –1 a –2 …a –m+1 a –m) q . Нужно найти значащие цифры числа:a –1 , a –2 , …,a –m . Представим число в развернутой форме и умножим его наq :

Отсюда видно, что a –1 есть целая часть произведенияX на числоq . Обозначим заX 1 дробную часть произведения и умножим ее наq :

Следовательно, a –2 есть целая часть произведенияX 1 на числоq . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило:для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению. В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтомуперевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.