Кто открыл совершенные числа. Отрывок, характеризующий Совершенное число. Самое длинное доказательство

Совершенные числа

Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Никомах Герасский, знаменитый философ и математик, писал: " Совершенные числа красивы. Но известно, что вещи редки и немногочисленны, безобразные встречаются в изобилии. Избыточными и недостаточными являются почти все числа, в то время как совершенных чисел немного" Но, сколько их, Никомах, живший в первом столетии нашей эры не знал.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число).

Первым прекрасным совершенным числом, о котором знали математики Древней Греции, было число "6". На шестом месте на званном пиру возлежал самый уважаемый, самый почетный гость. В библейских преданиях утверждается, что мир был создан в шесть дней, ведь более совершенного числа, среди совершенных чисел, чем "6", нет, поскольку оно первое среди них.

Рассмотрим число 6. Число имеет делители 1, 2, 3 и само число 6. Если сложить делители, отличные от самого числа 1 + 2 + 3 то мы получим 6. Значит, число 6 дружественно самому себе и является первым совершенным числом.

Следующим совершенным числом, известным древним, было "28". Мартин Гарднер усматривал в этом числе особый смысл. По его мнению, Луна обновляется за 28 суток, потому что число "28" - совершенное. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах. До Евклида были известны только эти два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть.

Благодаря своей формуле, Евклид сумел найти еще два совершенных числа: 496 и 8128.

Почти полторы тысячи лет люди знали только четыре совершенных числа, и никто не знал, могут ли существовать еще числа, которые можно представить в евклидовской формуле, и никто не мог сказать, возможны ли совершенные числа, не удовлетворяющие формуле Евклида.

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел.

Все совершенные числа треугольные. Это значит, что, взяв совершенные число шаров, мы всегда сможем сложить из них равносторонний треугольник.

Все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 1 3 + 3 3 + 5 3 …

Сумма обратных всем делителям совершенного числа, включая его самого, всегда равна 2.

Кроме того, совершенство чисел тесно связано с двоичностью. Числа: 4=22, 8 = 2? 2? 2, 16 = 2 ? 2 ? 2 ? 2 и т.д. называются степенями числа 2 и могут быть представлены в виде 2n, где n - число перемноженных двоек. Все степени числа 2 чуть-чуть "не достают" до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа.

Все совершенные числа (кроме 6) заканчиваются в десятичной записи на 16, 28, 36, 56, 76 или 96.

Компанейские числа

Понятия совершенных и дружественных чисел часто упоминаются в литературе по занимательной математике. Однако почему-то мало говорится о том, что числа могут дружить и компаниями. Понятие компанейских чисел хорошо раскрывается в англоязычных источниках.

Компанейскими называется такая группа из k чисел, в которых сумма собственных делителей первого числа равна второму, сумма собственных делителей второго - третьему и т.д. А первое число равно сумме собственных делителей k-го числа.

Есть компании по 4, 5, 6, 8, 9 и даже 28 участников, а вот по три не найдено. Пример пятёрки, пока единственной известной: 12496, 14288, 15472, 14536, 14264.

Оперируя большими числами, ученые пользуются степенями 10 для того, чтобы избавиться от огромного количества нулей. Например, 19 160 000 000 000 миль можно записать как 1,916·10 13 миль. Так же точно очень маленькое число, например 0,0000154324 г, может быть записано 1,54324·10 –5 г. Из приставок, используемых перед числительными, самой малой величине соответствует атто, происходящая от датского или норвежского atten – восемнадцать. Приставка означает 10 –18 . Приставка экса (от греческого hexa, т.е. 6 групп по 3 нуля), или сокращенно Э, означает 10 18 .

Самые большие числа

Самым большим числом, встречающимся в толковых словарях и имеющим название – степенью 10, является центилион, впервые использованный в 1852 г. Это миллион в сотой степени, или единица с 600 нулями.

Самым большим имеющим название недесятичным числом является буддистское число асанкхейя , равное 10 140 ; оно упоминается в трудах Джайна-сутры, относящихся к 100 г. до н.э.

Число 10 100 называется гугол . Этот термин был предложен 9-летним племянником Эдварда Каснера (США) (ум. в 1955 г.). 10 в степени гугол называется гуголплексом. Некоторое представление об этой величине можно получить, вспомнив, что количество электронов в наблюдаемой Вселенной, согласно некоторым теориям, не превышает 10 87 .

Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма, впервые использованная в 1977 г. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1977 г.

Наибольшее число множителей

Специалисты по ЭВМ, использовав более 400 связанных между собой компьютеров, нашли множители 100-значного числа. Вычисления, занявшие 26 дней, ставят под вопрос надежность многих современных шифровальных систем.

Простые числа

Простым числом является любое положительное целое число (кроме 1), делящееся только на себя или на единицу, т.е. 2, 3, 5, 7 или 11. Самое маленькое простое число – 2. Самое большое простое число, 391 581·2 216193 – 1, было открыто 6 августа 1989 г. группой Aмдал-6 . Число, содержащее 65 087 знаков, было получено на суперкомпьютере «Амдал-1200» в Санта-Кларе, штат Калифорния, США. Группа также открыла самые большие парные простые числа: (1 706 595·2 11235 – 1) и (1 706 595·2 11235 + 1). Самым маленьким непростым или составным числом (кроме 1) является 4.

Совершенные числа

Число является совершенным, если оно равно сумме своих делителей, отличных от самого числа, например 1 + 2 + 4 + 7 + 14 = 28. Самое маленькое совершенное число: 6 = 1 + 2 + 3.

Самое большое известное, 31-е по счету открытое на сегодняшний день, число: (2 216091 – 1)·2 216090 . Это число получено благодаря открытию в сентябре 1985 г. математиком Марсенном (США) числа 2 216091 – 1, которое в настоящее время известно как второе самое большое простое число.

Новейшая математическая константа

В ходе исследований турбулентного течения воды, погоды и других хаотических явлений выявилось существование новой универсальной константы – числа Фейгенбаума, названного по имени его первооткрывателя. Приблизительно оно равно 4,669201609102990.

Максимальное число доказательств теоремы

Самое длинное доказательство

Доказательство классификации всех конечных простых групп заняло более 14 тыс. страниц, вмещающих почти 500 научных работ, авторами которых явились более 100 математиков. Доказательство продолжалось более 35 лет.

Самая старая математическая задача

Она датируется 1650 г. до н.э. и в русской версии звучит следующим образом:

По дороге на Дижон
Встретил я мужа и семь его жён.
У каждой жены по семь тюков,
Вкаждом тюке по семь котов.
Сколько котов, тюков и жён
Мирно двигались в Дижон?

Самое большое претендовавшее на точность число в физике

Английский астроном сэр Артур Эддингтон (1882...1944) заявил в 1938 г., что во Вселенной ровно 15 747 724 136 275 002 577 605 653 961 181 555 468 044 717 914 527 116 709 366 231 425 076 185 631 031 296 протонов и столько же электронов. К сожалению Эддингтона, никто не согласился с его сверхточными подсчетами, которые в настоящее время всерьёз не воспринимаются.

Самый плодовитый математик

Леонард Эйлер (Швейцария, Россия) (1707...1783) был настолько плодовит, что и через 50 с лишним лет после его смерти его труды все ещё печатались впервые. Собрание его сочинений частями выпускается в свет, начиная с 1910 г., и в конечном итоге составит 75 больших томов размером ин-кварто.

Самая большая премия

Д-р Пауль Вольфскелл завещал в 1908 г. премию в 100 тыс. немецких марок тому, кто первым докажет «Великую теорему» Ферма . В результате инфляции размер премии составляет сейчас немногим более 10 тыс. немецких марок.

Самый длительный поиск на ЭВМ ответа на вопрос: да или нет?

20-е число Ферма + 1 было проверено на суперкомпьютере «Крэй-2» в 1986 г. с целью ответа на вопрос, является ли оно простым. После 10 дней вычислений был получен ответ – НЕТ.

Самые неграмотные в математическом отношении

Люди племени намбиквара, живущие на северо-западе штата Мату-Гросу, Бразилия, самые неграмотные в математике. У них полностью отсутствует система чисел. Правда, они пользуются глаголом, который обозначает «они равны».

Самое точное и неточное значение числа π

Самое большое количество десятичных знаков числа π, равное 1 011 196 691 знаку после запятой, было получено в 1989 г. Дэвидом и Грегори Чудновски из Колумбийского университета, Нью-Йорк, США, использовавшими суперкомпьютер «Крэй-2» и сеть компьютеров ИБМ 3090. Вычисления были сверены для точности. Кстати, десятичные разряды π с 762-го по 767-й после запятой содержат 6 девяток подряд.

В 1897 г. Генеральная Ассамблея американского штата Индиана утвердила билль 246, согласно которому число π принималось равным 4. В 1853 г. Уильям Шанкс опубликовал свои расчеты числа π до 707-го десятичного знака, произведённые вручную. Спустя 92 года, в 1945 г., было обнаружено, что последние 180 цифр неверны.

Самые древние единицы измерения

Самой древней известной мерой веса является бека амратского периода египетской цивилизации (около 3800 г. до н.э.), найденная в Накаде, Египет. Гири были цилиндрической формы с закруглёнными концами. Они весили от 188,7 до 211,2 г.

По-видимому, строители гробниц эпохи мегалита на северо-западе Европы (около 3500 г. до н.э.) пользовались мерой длины, равной 82,9 ± 0,09 см. К такому выводу пришел профессор Александр Том (1894...1985) в 1966 г.

Измерение времени

Вследствие изменения продолжительности суток, которые увеличиваются в среднем на 1 мс за век под влиянием приливных сил Луны, было пересмотрено определение секунды. Вместо 1/86 400 части средних солнечных суток ее длительность с 1960 г. определяется как 1/315 569 259 747 часть солнечного (или тропического) года по состоянию на 12 часов эфемеридного времени января 1900 г. В 1958 г. секунда принята равной 9 192 631 770 ± 20 периодам излучения, соответствующего переходу между уровнями основного состояния атома цезия-133 в отсутствие внешних полей. Самое большое суточное изменение было зарегистрировано 8 августа 1972 г., оно составляло 10 мс и было вызвано самой мощной солнечной бурей, наблюдаемой за последние 370 лет.

Точность цезиевого эталона частоты приближается к 8 частям на 10 14 , что выше, чем 2 части на 10 13 для гелиево-неонового лазера, стабилизированного метаном, и чем 6 частей на 10 13 для водородного мазера.

Самой длинной мерой времени является кальпа в индуистской хронологии. Она равна 4320 млн лет. В астрономии космический год есть период обращения Солнца вокруг центра Млечного Пути, он равен 225 млн лет. В позднем меловом периоде (около 85 млн лет назад) Земля вращалась быстрее, в результате чего год состоял из 370,3 суток. Имеются также свидетельства тому, что в эпоху кембрия (600 млн лет назад) год длился более 425 суток.

Книга рекордов Гиннеса, 1998 г.

Совершенная красота и совершенная бесполезность совершенных чисел

Перестаньте отыскивать интересные числа!
Оставьте для интереса хотя бы
одно неинтересное число!
Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа. Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток? Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2 n-1 (2n-1) - четное и совершенное, если число 2 n-1 - простое. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, … Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 2 63 зерен, а всего на шахматной доске окажется «кучка» из 2 64 -1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества. Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2 n -1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т.е. соответствующие им числа 2n-1 составные.) Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+… Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены. От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.
Определенный интерес для любителей представляет программа поиска совершенных чисел. Ее схема проста: в цикле для каждого числа проверять сумму его делителей и сравнивать ее с самим числом, - если они равны, то это число совершенное.

VAR I,N,Summa: LONGINT ;
Delitel: INTEGER;
begin FOR I:=3 TO 34000000 DO BEGIN Summa:=1;
FOR Delitel:=2 TO SQRT(I)
DO BEGIN N:=(I DIV Delitel);
IF N*Delitel=I THEN Summa:=Summa + Delitel + (I DIV Delitel);
END;
IF INT(SQRT(I))=SQRT(I) THEN Summa:=Summa-INT(SQRT(I));
IF I=Summa THEN WRITELN(I,’ - ‘,Summa) ;
END ;
END.

Обратите внимание, что количество проверяемых делителей каждого числа растет до квадратного корня из числа. Подумайте о том, почему это так. И о том, что истинная красота - это нечто, в хозяйстве совершенно бесполезное, но бесконечно дорогое для настоящих ценителей.

Собственный делитель натурального числа - это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным . Так, 6 = 3 + 2 + 1 - это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 - это еще одно такое число.

Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n –1 (2 n – 1) - совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.

Задача

Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.


Подсказка 1

а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) - совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n . Например, σ (3) = 1 + 3 = 4, а σ (4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна , то есть σ (ab ) = σ (a )σ (b ); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.

При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ (N ) = 2N . Для этого пригодится мультипликативность этой функции.

б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n –1 (2 n – 1) и найти их сумму. Должно получиться это же число.

Подсказка 2

Доказывать, что любое четное совершенное число - это степень двойки, умноженная на простое число Мерсенна, также удобно с помощью сигма-функции. Пусть N - какое-нибудь четное совершенное число. Тогда σ (N ) = 2N . Представим N в виде N = 2 k ·m , где m - нечетное число. Поэтому σ (N ) = σ (2 k ·m ) = σ (2 k )σ (m ) = (1 + 2 + ... + 2 k )σ (m ) = (2 k +1 – 1)σ (m ).

Получается, что 2·2 k ·m = (2 k +1 – 1)σ (m ). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m , а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M . Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ (m ). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.

Решение

В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.

1. Теорема Евклида.

а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ (pq ) = σ (p )σ (q ), где p и q - различные простые числа. Но довольно очевидно, что в этом случае σ (p ) = 1 + p , σ (q ) = 1 + q , а σ (pq ) = 1 + p + q + pq = (1 + p )(1 + q ).

Теперь завершим доказательство первого факта: если простое число имеет вид 2 n – 1, то число N = 2 n –1 (2 n – 1) - совершенное. Для этого достаточно проверить, что σ (N ) = 2N (так как сигма-функция - это сумма всех делителей числа, то есть сумма собственных делителей плюс само число). Проверяем: σ (N ) = σ (2 n –1 (2 n – 1)) = σ (2 n –1)σ (2 n – 1) = (1 + 2 + ... + 2 n –1)·((2 n – 1) + 1) = (2 n – 1)·2 n = 2N . Здесь было использовано, что раз 2 n – 1 - простое число, то σ (2 n – 1) = (2 n – 1) + 1 = 2 n .

б) Доведем до конца и второе решение. Найдем все собственные делители числа 2 n –1 (2 n – 1). Это 1; степени двойки 2, 2 2 , ..., 2 n –1 ; простое число p = 2 n – 1; а также делители вида 2 m ·p , где 1 ≤ m n – 2. Суммирование всех делителей тем самым разбивается на подсчет сумм двух геометрических прогрессий . Первая начинается с 1, а вторая - с числа p ; у обеих знаменатель равен 2. По формуле суммы элементов геометрической прогрессии сумма всех элементов первой прогрессии равна 1 + 2 + ... + 2 n –1 = (2 n – 1)/2 – 1 = 2 n – 1 (и это равно p ). Вторая прогрессия дает p ·(2 n –1 – 1)/(2 – 1) = p ·(2 n –1 – 1). Итого, получается p + p ·(2 n –1 – 1) = 2 n –1 ·p - то, что надо.

Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, .

2. Теорема Эйлера.

Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 - простое число Мерсенна , то n также должно быть простым числом. Дело в том, что если n = km - составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение - «если n - простое, то 2 n – 1 также простое» - не верно: 2 11 – 1 = 23·89.

Вернемся к теореме Эйлера. Наша цель - доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ (m ) следует, что m делится на M . Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ (m ). Это означает, что у числа m нет других делителей, кроме M и m . Значит, M = 1, а m - простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.

Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n , что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число - 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).

Послесловие

Первые два совершенных числа - 6 и 28 - были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа - 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы , оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», - говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 - самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.

Пятое совершенное число - 33 550 336 - было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!

Как мы знаем, Леонард Эйлер доказал, что любое четное совершенное число должно иметь вид 2 n –1 (2 n – 1), причем 2 n – 1 должно быть простым. Восьмое число - 2 305 843 008 139 952 128 - нашел тоже Эйлер в 1772 году. Здесь n = 31. После его достижений можно было осторожно сказать, что про четные совершенные числа науке стало что-то понятно. Да, они быстро растут, и их трудно вычислять, но хотя бы ясно, как это делать: надо брать числа Мерсенна 2 n – 1 и искать среди них простые. Про нечетные совершенные числа неизвестно почти ничего. На сегодняшний день не найдено ни одного такого числа, при том что проверены все числа до 10 300 (видимо, нижняя граница отодвинута даже дальше, просто соответствующие результаты еще не опубликованы). Для сравнения: число атомов в видимой части Вселенной оценивается величиной порядка 10 80 . При этом не доказано, что нечетных совершенных чисел не существует, просто это может быть очень большое число. Даже настолько большое, что наши вычислительные мощности никогда до него не доберутся. Существует ли такое число или нет - одна из открытых на сегодня проблем математики. Компьютерным поиском нечетных совершенных чисел занимаются участники проекта OddPerfect.org .

Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным . В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века - и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними - и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).

В 2008 году участниками проекта было найдено первое простое число, в котором больше 10 000 000 = 10 7 цифр. За это они получили приз $100 000. Денежные призы 150 000 и 250 000 долларов также обещаны за простые числа, состоящие из больше чем 10 8 и 10 9 цифр соответственно. Предполагается, что из этих денег получат вознаграждение и те, кто нашел меньшие, но еще не открытые простые числа Мерсенна. Правда, на современных компьютерах проверка чисел такой длины на простоту займет годы, и это, наверное, дело будущего. Самое большое простое число на сегодня равно 2 43112609 – 1. Оно состоит из 12 978 189 цифр. Отметим, что благодаря тесту Люка-Лемера (см. его доказательство: A proof of the Lucas–Lehmer Test) сильно упрощается проверка на простоту чисел Мерсенна: не нужно пытаться найти хотя бы один делитель очередного кандидата (это очень трудоемкая работа, которая для таких больших чисел практически невыполнима сейчас).

У совершенных чисел есть забавные арифметические свойства:

  • Каждое четное совершенное число является также треугольным числом , то есть представимо в виде 1 + 2 + ... + k = k (k + 1)/2 для некоторого k .
  • Каждое четное совершенное число, кроме 6, является суммой кубов последовательных нечетных натуральных чисел. Например, 28 = 1 3 + 3 3 , а 496 = 1 3 + 3 3 + 5 3 + 7 3 .
  • В двоичной системе счисления совершенное число 2 n –1 (2 n – 1) записывается очень просто: сначала идут n единиц, а потом - n – 1 нулей (это следует из формулы Евклида). Например, 6 10 = 110 2 , 28 10 = 11100 2 , 33550336 10 = 1111111111111000000000000 2 .
  • Сумма чисел, обратных всем делителям совершенного числа (само число здесь тоже участвует), равна 2. Например, 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.

Каратецкая Мария

В данной реферативной работе с элементами самостоятельного исследования "открывается" понятие совершенного числа,

исследуются свойства совершенных чисел,история их появления,приводятся интересные факты,связанные с понятием.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Средняя школа №19с углубленным изучением

Отдельных предметов»

Научное общество учащихся «Умники и умницы»

Реферативная работа с элементами

самостоятельного исследования

«Совершенные числа»

Выполнила:

Ученица 7класса «А»

Каратецкая Мария

Руководитель:

учитель математики

Колина Наталья Константиновна

Адрес ОУ:

606523, Нижегородская область, Городецкий

Район, г.Заволжье, ул.Молодежная, 1

МБОУ СШ №19 с УИОП

E-mail: [email protected]

2015 г.

1.Введение……………………………………………………………………………3

2.Что такое совершенное число?……...........................…………............................4

3.История появления совершенных чисел………………………………………....4

4.Свойства совершенных чисел…………………………….……………………....8

5.Интересные факты…………………………………..……………….....................8

6.Примеры задач…………………………………………………………………….9

7.Заключение…………………………………………………………………..........11

8.Список используемой литературы………………………….…………...............12

"Всё прекрасно благодаря числу» Пифагор.

1.Введение

Число является одним из основных понятий математики. Существует большое количество определений понятию "число". О числах первым начал рассуждать Пифагор. По его учению число 2 означало гармонию, 5 – цвет, 6 –холод, 7–разум, здоровье, 8 –любовь и дружбу. Первое научное определение числа дал Евклид в труде "Начала": "Единица есть то, в соответствии, с чем каждая из существующих вещей называется одной. Число есть множество, сложенное из единиц".

Есть множества чисел, их подмножества, группы, и одна из необычных групп - это совершенные числа. В этой группе известно всего лишь 48 чисел, но не смотря на это, они образуют одно из наиболее интересных подмножеств множества натуральных чисел.

Проблема: Я люблю решать нестандартные задачки. Однажды мне попалась задача, в которой говорилось о совершенных числах, я испытала трудности при решении, поэтому заинтересовалась этой темой и решила подробнее изучить эти числа.

Цель исследования: познакомиться с понятием совершенного числа, исследовать свойства совершенных чисел, привлечь внимание учащихся к данной теме.

Задачи:

Изучить и проанализировать литературу по теме исследования.

Изучить историю появления совершенных чисел.

-«Открыть» свойства совершенных чисел и области их применения

Расширить свой умственный кругозор.

Методы исследования: изучение литературы, сравнение, наблюдение,

теоретический анализ, обобщение.

2.Что такое совершенное число?

Совершенное число - натуральное число , равное сумме всех своих собственных делителей (т. е. всех положительных делителей, включая 1,но отличных от самого числа,).

Первое совершенное число имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.

Второе совершенное число имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.

Третье совершенное число 496 имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.

Четвертое совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

По мере того, как натуральные числа возрастают, совершенные числа встречаются всё реже.

3. История появления совершенных чисел

Древнегреческий математик и философ Пифагор , он же создатель религиозно-философской школы пифагорейцев (570-490 гг. до н. э), ввел понятия избыточные и недостаточные числа.

Если сумма делителей числа больше самого числа, то такое число называется «избыточным». Например, 12 – избыточное число, так как сумма его делителей равна 16. Если сумма делителей числа меньше самого числа, то такое число называется «недостаточным».

Например, 10 – недостаточное число, так как сумма его делителей (1, 2 и 5) равна лишь 8.

Пифагорейцы развивали свою философию из науки о числах. Совершенные числа, считали они, есть прекрасные образы добродетелей. Они представляют собой середину между излишеством и недостатком. Они очень редки и порождаются совершенным порядком. В противоположность этому сверхизобильные и несовершенные числа, которых сколь угодно много, не расположены в порядке и не порождаются с некоторой определенной целью. И поэтому они имеют большое сходство с пороками, которые многочисленны, не упорядочены и не определены.

«Совершенное число есть равное своим долям». Эти слова принадлежат Евклиду , древнегреческому математику, автору первого из дошедших до нас теоретических трактатов по математике «Начала»(3 век до н.э.). До Евклида были известны только два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть. Благодаря своей формуле 2 p-1 *(2 p -1)- совершенное число, если (2 p -1)- простое число, Так Евклид сумел найти еще два совершенных числа: 496 и 8128. Способ нахождения совершенных чисел описан в IX книге «Начал».

Никомах Геразский , греческий философ и математик (1-я пол. 2 в. н. э.), в своем сочинении «Введение в арифметику» писал: «…Прекрасные и благородные вещи обычно редки и легко пересчитываемы, тогда как безобразные и плохие - многочисленны; вот и избыточные и недостаточные числа отыскиваются в большом количестве и беспорядочно, так что способ их нахождения не упорядочен, в то время как совершенные числа легко перечислимы и расположены в надлежащем порядке. Ведь среди однозначных чисел находится одно такое число 6, второе число 28 –единственное среди десятков, третье число 496 – единственное среди сотен, а четвёртое число 8128 –среди тысяч, если ограничиться десятью тысячами. И присущее им свойство состоит в том, что они попеременно оканчиваются то на шестёрку, то на восьмёрку, и все являются чётными.Изящный и надёжный способ их получения, не пропускающий ни одного совершенного числа и дающий одни только совершенные числа, состоит в следующем. Расположи все чётно-чётные числа, начиная с единицы, в один ряд, продолжая его так далеко, насколько пожелаешь: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096.

Затем складывай их последовательно, прибавляя каждый раз по одному,

и после каждого прибавления смотри на результат; и когда он будет

первичным и несоставным, умножь его на последнее прибавленное

число, в результате чего ты всегда будешь получать совершенное число.

Если же он будет вторичным и составным,умножать не надо, но надо

прибавить следующее число и посмотреть на результат; если он снова

окажется вторичным и составным, снова пропусти его и не умножай, но

прибавь следующее; но если он будет первичным и несоставным, то

умножив его на последнее прибавленное число, ты снова получишь

совершенное число, и так до бесконечности. И таким способом ты

получишь все совершенные числа по порядку, не пропустив ни одного

из них. К примеру, к 1 я прибавляю 2 и смотрю, какое число получилось

в сумме, и нахожу, что это число 3, первичное и несоставное в согласии

с тем, что говорилось выше, поскольку оно не имеет разноимённых

с ним долей, но только названную по нему долю; теперь я умножаю

его на последнее прибавленное число, которое есть 2, и получаю 6; и я

объявляю его первым настоящим совершенным числом, имеющим

такие доли, что они, будучи составленными вместе, укладываются в

самом числе: ведь единица является его названной по нему, о есть

шестой, долей, и 3 является половиной в соответствии с числом 2,и

обратно, двойка является третью. Число 28 получается этим же способом, когда следующее число 4 прибавляется к уже сложенным

выше. Ведь три числа 1, 2, 4 в сумме дают число 7, которое оказывается

первичным и несоставным, поскольку оно имеет только названную по

нему седьмую долю; а потому я умножаю его на последнее количество,

прибавленное к сумме, и мой результат составляет 28, равное своим

долям, и имеющее доли, названные по уже упомянутым числам:

половинную для четырнадцати, четвёртую для семёрки, седьмую для

4, четырнадцатую в противоположность половине, двадцать восьмую

в соответствии с собственным названием, а такая доля для всех чисел равна единице. И когда уже открыты в единицах 6 и в десятках 28, ты

8, и получишь 15; рассматривая его, я выясняю, что оно не является

первичным и несоставным, потому что в дополнение к названной по нему

доле оно имеет разноимённые с ним доли, пятую и третью; поэтому я не

умножаю его на 8, но прибавляю следующее число 16 и получаю число

31. Оно является первичным и несоставным, а потому его нужно, в

соответствии с общим правилом, умножить на последнее добавленное число 16, в результате чего получится 496 в сотнях; а затем получится 8128 в тысячах; и так далее, насколько будет желание продолжать…»

Следует сказать, что под вторичным числом Никомах понимает число, кратное данному, то есть то, которое можно получить, домножением на натуральные числа; долями он называет множители, входящие в разложение числа.

Если Никомах Геразский нашел лишь 4 первых совершенных числа,то Региомонтан(подлинное имя - Йоганн Мюллер), немецкий математик, живший в 15 веке,нашел пятое совершенное число - 33550336.

В XVI веке немецкий ученый Иоганн Эфраим Шейбель нашел ещё два совершенных числа- 8589869056 (8 миллиардов, 589 миллионов, 869 тысяч, 56), 137438691328 (137 миллиардов, 438 миллионов, 691 тысяча, 328).

Катальди Пьетро Антонио (1548-1626), бывший профессором математики во Флоренции и Болонье, который первый дал способ извлечения квадратных корней, тоже занимался поисками совершенных чисел. В его записках были указаны значения шестого и седьмого совершенных чисел. 8 589 869 056 (шестое число), 137 438 691 328 (седьмое число) для р=17 и 19)

Французский математик XVII века Марен Мерсенн предсказал, что многие числа, описываемые формулой , где p - простое число, также являются простыми. Ему удалось доказать, что для p=17, p=19, p=31 числа 8589869056, 137438691328, 2305843008139952128 являются совершенными.

Швейцарский, немецкий и российский математик и механик, внёсший фундаментальный вклад в развитие этих наук, Леонард Эйлер (начало 18в.) доказал, что все чётные совершенные числа соответствуют алгоритму построения чётных совершенных чисел, который описан в IX книге Начал Евклида. Также он доказал, что каждое чётное совершенное число имеет вид Mp, где число Мерсенна Mp является простым.

Девятое совершенное число было вычислено только в 1883 году. В нем оказалось тридцать семь знаков. Этот вычислительный подвиг совершил сельский священник из-под Перми Иван Михеевич Первушин . Первушин считал без всяких вычислительных приборов.

В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127).

На февраль 2013 года известно 48 простых чисел Мерсенна и соответствующих им чётных совершенных чисел, поиском новых простых чисел Мерсенна занимаются проекты распределённых вычислений GIMPS и OddPerfect.org.

4. Свойства совершенных чисел

1.Все чётные совершенные числа (кроме 6) являются суммой кубов последовательных нечётных натуральных чисел.

2.Все чётные совершенные числа являются треугольными числами ; кроме того, они являются шестиугольными числами, то есть, могут быть представлены в виде n(2n−1) для некоторого натурального числа n.

3.Сумма всех чисел, обратных делителям совершенного числа (включая его само), равна 2,то есть

4.Все чётные совершенные числа, кроме 6 и 496, заканчиваются в десятичной записи на 16, 28, 36, 56 или 76.

5.Все чётные совершенные числа в двоичной записи содержат сначала p единиц, за которыми следует p -1 нулей (следствие из их общего представления).

6. Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности.

5. Интересные факты

Из-за трудности нахождения и таинственной непостижимости совершенные числа в старину считались божественными. Так, средневековая церковь полагала, что изучение совершенных чисел ведет к спасению души, что нашедшему новое совершенное число гарантировано вечное блаженство. В XII веке церковь утверждала, что для спасения души необходимо найти пятое совершенное число.Существовало также убеждение, что мир потому прекрасен, что сотворен создателем за 6 дней. А вот род человеческий, дескать, несовершенен, ибо произошел от несовершенного числа 8. Ведь именно 8 людей спаслось от всемирного потопа в Ноевом ковчеге. Можно добавить, что в том же ковчеге спаслись еще семь пар чистых и семь пар нечистых животных, что в сумме составляет совершенное число 28. Да и вообще легко обнаружить множество подобных совпадений. Например, руки человеческие можно объявить совершенным орудием по той причине, что в десяти пальцах насчитывается 28 фаланг…

Египетская мера длины "локоть" содержала 28 пальцев.

На шестом месте на званом пиру возлежал самый уважаемый, самый почетный гость.

В 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Позже узнали, что это было здание неопифагорейской академии наук. В ней было двадцать восемь членов.

Даже сейчас, следуя древней традиции, некоторые академии по уставу состоят из 28 действительных членов. Несмотря на то, что совершенным числам приписывается мистический смысл,числа Мерсенна долгое время были абсолютно бесполезными, как, впрочем, и совершенные числа. Но в настоящее время на простых числах Мерсенна основана защита электронной информации, а также они используются в криптографии и других приложениях математики.

Лев Николаевич Толстой шутливо "хвастался" тем, что дата его рождения (28 августа по календарю того времени) является совершенным числом. Год рождения Л.Н.Толстого (1828) - тоже интересное число: последние две цифры (28) образуют совершенное число; а если переставить местами первые две цифры, то получится 8128 - четвертое совершенное число.

6. Примеры задач

1.Найдите все совершенные числа до 1000.

Ответ: 6 (1+2+3=6), 28 (1+2+4+7+14=28), 496 (1 + 2 + 4 + 8 + 16 + 31 + 62 +

124 + 248=496). Всего чисел-3.

2.Найдите совершенное число которое больше 496, но меньше 33550336.

Ответ: 8128.

3.Совершенное число, большее 6, делится на 3. Докажите, что оно делится на 9.

Решение: метод от противного. Предположим, что совершенное число, делящееся на 3,не кратно 9. Тогда оно равно 3n, где n не кратно 3. При этом все натуральные делители числа 3n (включая его самого) можно

разбить на пары d и 3d, где d не делится на 3. Следовательно, сумма всех

делителей числа 3n (она равна 6n) делится на 4. Отсюда n кратно 2. Далее

заметим, что числа 3n /2 , n, n/2 и 1 будут различными делителями числа 3n,

их сумма равна 3n + 1 > 3n, откуда следует, что число 3n не может быть

совершенным. Противоречие. Значит, наше предположение неверно,и утверждение доказано.

4. Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

7.Заключение

Пифагор обожествлял числа. Он учил: числа управляют миром. Всемогущество чисел проявляется в том, что всё в мире подчиняется числовым отношениям. Пифагорейцы искали в этих отношениях и закономерности реального мира, и пути к мистическим тайнам и откровениям. Числам, учили они, свойственно всё – совершенство и несовершенство, конечность и бесконечность.

Рассмотрев одну из групп натуральных чисел - совершенные числа, я сделала вывод, что разнообразие натуральных чисел является бесконечным. Что касается утверждения о том, что среди совершенных чисел встречаются как чётные, так и нечетные числа,то оно не может считаться верным, так как все обнаруженные до сих пор совершенные числа являются чётными. Никто не знает, существует ли хоть одно нечётное совершенное число как и то, что множество совершенных чисел бесконечно.

В дальнейшем я хочу исследовать дружественные числа.

Дружественные числа - два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и наоборот, сумма всех собственных делителей второго числа равна первому числу. Примером такой пары чисел является пара 220 и 284 .Частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Хотя большого значения для теории чисел эти пары не имеют, но являются любопытным элементом занимательной математики.

8.Список использованной литературы

  1. Волина В. В. Занимательная математика для детей./Ред. В. В. Фёдоров; Худ. Т. Фёдорова. – С.-Пб.: Лев и К°, 1996. – 320 с.
  2. Универсальная школьная энциклопедия. Т. 1. А – Л/Глав. ред. Е. Хлебалина, вед. ред. Д. Володихин. – М.: Аванта+, 2003. – 528с.
  3. Универсальная школьная энциклопедия. Т. 2. А – Л/Глав. ред. Е. Хлебалина, вед. ред. Д. Володихин. – М.: Аванта+, 2003. – 528с.
  4. Электронная детская энциклопедия Кирилл и Мефодий (версия 2007 год).
  5. Электронный сайт WikipediA/ http://www.wikipedia.org/
  6. http://eschool.karelia.ru/petrozavodsk/projects/zpivkoren/Lists/List/DispForm.aspx?ID=18
  7. http://www.ngpedia.ru/id598396p3.html
  8. http://www.ngpedia.ru/id598396p1.html
  9. http://academic.ru/dic.nsf/bse/133758/%D0%A1%D0%BE%D0%B2%D0%B5%D1%80%D1%88%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5
  10. http://arbuz.narod.ru/z_sov1.htm