Простые и составные числа. Простые и составные числа, свойства простых чисел

Определение 1

Натуральное число $p$ называется простым числом, если у него только $2$ делителя: $1$ и оно само.

Делителем натурального числа $a$ называют натуральное число, на которое исходное число $a$ делится без остатка.

Пример 1

Найти делители числа $6$.

Решение: Нам надо найти все числа, на которые заданное число $6$ делится без остатка. Это будут числа: $1,2,3,6.$ Значит делителем числа $6$ будут числа $1,2,3,6.$

Ответ: $1,2,3,6$.

Значит, для того, чтобы найти делители числа надо найти все натуральные числа, на которые данное делится без остатка. Нетрудно заметить, что число $1$ будет являться делителем любого натурального числа.

Пример 2

На сколько равных кучек можно разделить $15$ орехов?

Решение. Нам необходимо разделить поровну нацело $15$ орехов, т.е. найти делители числа $15$.Найдем числа, на которые число $15$ делится без остатка.

Это числа:$1,3,5,15$. Значит $15$ орехов можно разделить на $1,3,5,15$ равных кучек.

Ответ: на $1,3,5,15$ кучек.

Определение 2

Составным называют число, у которого кроме единицы и самого себя есть другие делители.

Примером простого числа может являться число $13$, примером составного число $14$.

Замечание 1

Число $1$ имеет только один делитель-само это число, поэтому его не относят ни к простым, ни к составным.

Наибольший общий делитель

Определение 4

Наибольшее натуральное число, на которое делятся без остатка числа $a$ и $b$, называется наибольшим общим делителем и часто обозначается НОД.

Чтобы найти наибольший общий делитель двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выбрать числа, которые входят в разложение этих чисел
  3. Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

Пример 3

Найти НОД чисел $63$ и $81$.

Решение: Найдём НОД чисел $63$ и $81$

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Свойство составных и простых чисел

Теорема 1

Любое составное число можно разложить на $2$ множителя, каждый из которых больше единицы. Простое число так представить нельзя.

Действительно, простое число $17$ можно представить в виде произведения множителей только так: $17=1\cdot 17$, а составное число $18=1\cdot 2\cdot 9$. У составного числа $18$ три множителя, два из которых больше единицы.

Замечание 2

Всякое составное число можно разложить на простые множители и представить в виде произведения множителей, которые являются простыми числами.

Свойства простых чисел

    Если простое число $p$ делится на простое число $q$, то эти числа равны $(p=q)$. Действительно, если $p$ - простое число, то оно по определению имеет только два делителя, а именно $1$ и $p$. Но т.к. по условию $р\vdots q$, значит $q$ равно либо $1$, либо $p$. Т. к $q≠1$, значит $p=q$.

    Если $p$- простое число, то любое натуральное число либо делится на $p$, либо взаимно простое с $p$.

    В самом деле, допустим, что $p$ и $n$- не взаимно простые. И либо опровергнем, либо убедимся в этом. Если указанные числа не взаимно простые, то у них должен быть хотя бы один общий делитель, отличный от $1$, обозначим его $d$. Но по условию $p$- простое число, значит имеет по определению, всего два делителя-$1$ и $p$.Поскольку $d≠1$, то $d=p$, и поэтому $n$ делится на $p$.

    Произведение натуральных чисел $a$ и $b$ делится на простое число $p$ в том случае, когда хотя бы одно из этих чисел делится на $p$.

    Данное утверждение верно для произведения нескольких множителей- если такое произведение делится на простое число $p$, то хотя бы один из множителей делится на $p$.

    Любое натуральное число, отличное от $1$, является либо простым, либо произведением простых чисел

    Если натуральное число m делится на простое число $p$, то в любом разложении этого числа на простые множители хотябы один из множителей равен $p$.

    Действительно, пусть $m=p_{1\dots \dots .}p_k$-разложение на множители.Так как $m\vdots p$, то по утверждению,данному в п.3 хотя бы один из множителей делится на $p$.Пусть, например $р_1\vdots p$.Тогда по утверждению, данному в п.1 выполняется равенство $р_1=p$

    Любые два разложения составного числа отличаются друг от друга только порядком множителей.

Замечание 3

Из простых чисел с помощью умножения можно постоить все натуральные числа.

Свойства простых чисел

    Среди простых чисел нет наибольшего

    Если $n$-составное натуральное число, то среди его простых делителей есть хотя бы один делитель $p$, такой, что $р^2\le n$.

    Второе свойство можно успешно использовать при разложении числа на множители или при проверке его на простоту. Достаточно ограничиться проверкой делимости числа $n$ на простые делители p,для которых будет выполняться $р^2\le n$.

Пример 4

Проверить, является ли число $91$ составным.

Решение: Так как $7^2

а имеет по крайней мере два делителя — единицу и само число а . Действительно, а:1 = а, а:а = 1.

Число 5 имеет только два делителя — числа 1 и 5. Только два делителя имеют также, в частности, числа 2, 7, 11, 13. Такие числа именуются простыми.

Натуральное число называют простым , если оно имеет только два натуральных делителя : единицу и само это число.

Для комфорта была сформирована таблица простых чисел . Число два - минимальное простое число. Заметим, что это единственное чётное простое число. Фактически, все другие чётные числа имеют минимально три делителя: число 1, число 2 и само число.

Простых чисел бесчисленное множество . Максимального простого числа не бывает.

У чисел 6, 15, 49, 1000 есть больше двух делителей.

Например: 10=2 .5;

80 = 2 . 2 . 2 . 2 . 5;

81= 3 . 3 . 3 . 3;

200 = 2 .2 .2 .5 .5.

Заметим, что любые два разложения числа на простые множители состоят из одних и тех же множителей и могут отличаться только их последовательностью. Как правило, произведение одинаковых множителей в разложении числа на простые множители заменяют степенью .

Например :

18 = 2 . 3 2 ; 80 = 2 4 . 5; 81 = 3 4 ; 200 = 2 3 - 5 2 .

При разложении числа на простые множители целесообразно использовать схему, которую продемонстрируем на примере разложения числа 2940:

1) 2940 поделится на 2, 2940: 2 = 1470 ;

2) 1470 поделится на 2, 1470: 2 = 735 ;

3) 735 не поделится на 2, но поделится на 3, 735: 3 = 245 ;

4) 245 не поделится на 3, но поделится на 5, 245: 5 = 49 ;

5) 49 не поделится на 5, но поделится на 7, 49: 7 = 7 ;

6) 7 поделится на 7, 7: 7 = 1 .

Таким образом , 2940 = 2 . 1470 = 2 . 2 . 735 = 2 . 2 . 3 . 245 = = 2 . 2 . 3 . 5 . 49 = 2 . 2 . 3 . 5 . 7 . 7 = 2 2 . 3 . 5 . 7 2 .

Если простые числа записать в порядке их возрастания, то образуется последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17…….

Последовательность простых чисел имеет много интересных свойств и тайн. Например, ученые Древней Эллады отметили, что среди простых чисел много таких разность которых равна двум, например: 3 и 5; 5 и 7; 11 и 13; 17 и 19 и т.д. Подобные пары чисел именуют простыми числами близнецами. Уже более 25 веков ученные стараются найти существуют ли максимальное число близнец, но до сих пор ответ на этот вопрос не найден.

Простые и составные числа. Примеры. Определение. Следствия.

Вве-де-ние

Любое число можно пред-ста-вить в виде про-из-ве-де-ния еди-ни-цы на само это число.

На-при-мер,

В общем виде

Вывод: вся-кое число де-лит-ся на само себя и на еди-ни-цу.

Рас-смот-рим таб-ли-цу

В за-ви-си-мо-сти от ко-ли-че-ства де-ли-те-лей среди на-ту-раль-ных чисел вы-де-ля-ют про-стые и со-став-ные.

Опре-де-ле-ния:

Число, ко-то-рое имеет толь-ко два раз-лич-ных де-ли-те-ля - еди-ни-цу и само это число - на-зы-ва-ют про-стым.

Число, ко-то-рое имеет более двух де-ли-те-лей, на-зы-ва-ют со-став-ным.

Число 1 имеет един-ствен-ный де-ли-тель. По-это-му еди-ни-цу не от-но-сят ни к со-став-ным, ни к про-стым чис-лам.

След-ствие 1

Все на-ту-раль-ные числа можно раз-бить на 3 груп-пы:

  1. Число 1. Оно имеет един-ствен-ный де-ли-тель.
  2. Про-стые числа. Они имеют в точ-но-сти два де-ли-те-ля.
  3. Со-став-ные числа. У этих чисел более двух де-ли-те-лей.

Чтобы узнать, про-стым или со-став-ным яв-ля-ет-ся число, можно вос-поль-зо-вать-ся таб-ли-ца-ми.

Таб-ли-ца про-стых чисел от 2 до 997 при-ве-де-на на фор-за-це учеб-ни-ка. Пер-вые де-сять про-стых чисел - это: 2, 3, 5, 7, 11, 13, 17, 19, 23. По-лез-но вы-учить их на-и-зусть.

След-ствие 2

Разбор примера. Докажите, что числа 2968, 3600, 888 888, 676 676 являются составными.

До-ка-жи-те, что числа 2968, 3600, 888 888, 676 767 яв-ля-ют-ся со-став-ны-ми.

Разбор примера. Может ли произведение двух простых чисел быть простым числом?

Может ли про-из-ве-де-ние двух про-стых чисел быть про-стым чис-лом?

Пусть a и b - это неко-то-рые про-стые числа. Число a де-лит-ся на 1 и на само себя. Число b де-лит-ся на 1 и на само себя.

Рас-смот-рим про-из-ве-де-ние . Мы знаем, что если одно из двух чисел де-лит-ся на неко-то-рое число, то их про-из-ве-де-ние де-лит-ся на это число.

Кроме того, про-из-ве-де-ние де-лит-ся на еди-ни-цу и на само себя.

Вывод: Про-из-ве-де-ние имеет, как ми-ни-мум, че-ты-ре де-ли-те-ля. Зна-чит, это со-став-ное число. Оно не может быть про-стым.

Разбор примера. Найдите два составных числа m, которые удовлетворяют неравенству 56

Най-ди-те два со-став-ных числа m, ко-то-рые удо-вле-тво-ря-ют нера-вен-ству .

Разбор примера. Верно ли, что все четные числа являются составными?

Верно ли, что все чет-ные числа яв-ля-ют-ся со-став-ны-ми?

Ответ: невер-но. При-ме-ром слу-жит число 2.

Разбор примера. Может ли площадь квадрата выражаться простым числом, если длина его стороны выражается натуральным числом?

Может ли пло-щадь квад-ра-та вы-ра-жать-ся про-стым чис-лом, если длина его сто-ро-ны вы-ра-жа-ет-ся на-ту-раль-ным чис-лом?

Рас-смот-рим квад-рат со сто-ро-ной a.

Учитель математики МАОУ СОШ №71 г. Краснодара Степанченко Е.М.

Урок по теме « Простые и составные числа» 6-класс

Цели:

Ввести понятие простых и составных чисел;

Научить отличать простые числа от составных чисел, основываясь на определении этих чисел;

Научить работать с таблицей простых чисел;

Способствовать развитию активного познавательного интереса к предмету;

Научить сравнивать различные объекты: выделять из множества один или несколько объектов, имеющих общие свойства;

Тип урока: Урок ознакомления с новым материалом.

Оборудование: компьютер, мультимедийный проектор.

Ход урока

I. Организационный момент. Мотивация к учебной деятельности

Пифагор провозгласил, что числа правят миром, и поэтому он придумывал, как с помощью чисел изображать такие понятия, как совершенство и дружба. А вам интересно, что у него получилось? Тогда начинаем.

II .Подготовка к работе на основном этапе

Сейчас я расскажу вам сказочную историю из жизни чисел.

Однажды встретились трое друзей: число 24, единица и число 5. Пятерочка поинтересовалась у своих друзей, как дела? Число 24 рассказало, что 24сентября был День его рождения. На праздник были приглашены в гости все делители числа 24.

Кто пришел к нему в гости? Обучающиеся отвечают (1, 2, 3, 4, 6, 8,12).

Пятерочка расстроилась, ведь на ее День рождения 5 сентября кроме единицы и самой пятерочки никого не было.

Почему? Попробуйте объяснить. Ребята говорят, что у числа 5 только два делителя 1 и само число 5.

А единица похвасталась, что ее пригашают все.

Ребята, а почему единицу приглашают в качестве делителя все числа? Ребята отвечают, что любое число делится на 1.

Число 24 спросило единицу, а к тебе кто приходил на праздник. И тут расстроилась единица.

Ребята, почему расстроилась единица? Ребята отвечают, что у единицы только один делитель, само число 1.

Ой, какие мы разные, сказали друзья. Ребята, в чем отличие между этими числами?

Ученики отвечают, что число24 имеет 8 делителей. У числа 5 всего 2 делителя, а у числа 1 только один делитель.

III . Подготовка к работе на основном этапе

А сейчас выполним следующее задание. На каждой парте лежит лист с заданием. Нужно заполнить таблицу, работаете парами. Кто первый закончит, тот поднимает сигнальную карточку.

Делители числа

Количество делителей

1,2,3,5,6,10,15,30

1,2,3,4,6,9,12,18,36

Вопрос, на какие группы можно разделить данные числа? Почему?

Ответ: на три группы:

1-я группа – числа, которые имеют только два делителя. Такие числа называют простыми.

2-я группа – числа, которые имеют более двух делителей. Такие числа называют составными.

3-я группа – число 1, у него только один делитель. Число1 не является ни простым ни составным.

Давайте вместе закончим заполнение таблицы. В последнем столбце запишите название данных чисел. Проверяем. Один ученик читает название чисел.

7,17,19 – простые числа; 10,30,36 – составные числа. Проверяем по слайду.

Попробуйте самостоятельно сформулировать определения простых и составных чисел.

Натуральное число называется простым, если оно имеет только два делителя: единицу и само это число.

Натуральное число называется составным, если оно имеет более двух делителей.

Назовите несколько составных чисел. Ребята называют. Для подтверждения, что число составное нужно назвать хотя бы один дополнительный делитель (кроме 1 и самого этого числа).

Назовите несколько простых чисел. Ребята называют.

А число 419 простое или составное? Попробуйте применить признаки делимости. Повторить признаки делимости на2, на3, на 5, на9, на 10. К сожалению это нам не помогло. Как быть. Наш урок может затянуться, пока мы будем проверять все возможные делители. Я вам подскажу. Откройте форзац учебника, перед вами таблица простых чисел (до 997). Ребята находят число 419 в таблице. Эта таблица будет вашей помощницей.

Рассмотрите внимательно таблицу и ответьте на мои вопросы.

    назовите наименьшее простое число (2)

    что вы еще можете сказать про число 2 (оно четное)

    есть ли среди простых чисел еще четные числа? (нет, 2 единственное четное простое число)

    назовите наименьшее двузначное простое число (11), а наибольшее (97)

    сколько однозначных простых чисел? (4 числа), а двузначных (21), а трехзначных (143)

    что вы можете сказать о числах 29 и 31, 41 и 43, 59 и 61 и т.д. (они выделены красным цветом. Почему? (31-29= 2, 43-41=2,61-59=2) такие числа называют близнецами.

    Назовите пары близнецы среди трехзначных чисел (например 521 и 523)

IV . Историческая справка

Великий русский математик Пафнутий Львович Чебышев занимался изучением свойств простых чисел. Он доказал, что между любым натуральным числом, большим 1, и числом, вдвое большим, всегда имеется не менее одного простого числа,

Проверим этот факт с помощью нашей таблицы. Ребята называют число, затем удваивают его и проверяют по таблице, есть ли между этими числами простое число.

V . Практическая деятельность учащихся

У доски работает ученик. Дидактический материал А.С.Чесноков, К.И.Нешков Дидактические материалы по математике стр59 №15, №16, №17

Все вместе проверяем. Ученик, выполнявший задания комментирует.

48: 1, 2 , 3 , 4, 6, 8, 12, 16, 24, 48

67< Z < 73; Z =68; Z =69

№16

13; 17

Второй ученик по учебнику стр.17 №95

2968 составное т.к. оно делится на 2 (имеет больше двух делителей).

3600 составное т.к. оно делится на 2 , на 3 на 5 (имеет больше двух делителей).

888888 составное т.к. оно делится на 2, на 4, на 8, на 11 (имеет больше двух делителей).

676767 составное т.к. оно делится на 67 (имеет больше двух делителей).

Третий ученик №96

а) нет, т.к. произведение двух чисел будет делиться на каждый множитель.3*5=15; 15:3=5;15:5=3 (больше двух делителей)

То есть составное число можно разложить на простые множители. Примеры: 10=2*5; 14=2*7; 30=2*3*5; 77=7*11; 65=5*13; 70=2*5*7;

IV . Открытие новых знаний

Следующее задание: запишите в тетради число 6, это число простое или составное? (составное)

Найдите все делители этого числа, а теперь сложите их все, кроме самого числа 6. Что получилось? (1+2+3=6) Удивительно, не правда ли. Число 6 совершенное число. Может быть, поэтому шестое место считалось самым почетным у древних римлян.

Число 6 первое совершенное число.

Составьте алгоритм нахождения совершенного числа. Запишите ваш алгоритм на листе, который лежит у вас на парте. Работаем в парах. Ребята записывают алгоритм. Зачитывают несколько вариантов. Ученики корректируют. Совместными усилиями составили алгоритм:

    найти все делители числа

    сложить все делители, отличающиеся от этого числа

    если результат сложения будет равен самому числу, то это число совершенное

А теперь, предлагаю вам найти следующее совершенное число. Продолжаем работать в парах.

Ребята находят следующее совершенное число 28 (1+2+4+7+14=28). Луна совершает оборот вокруг Земли за 28 дней.

По мере того как натуральные числа возрастают, совершенные числа встречаются все реже. Третье совершенное число – 496 , четвертое 8128, пятое 33 550 336 и т.д.

V . Рефлексия

Сегодня на уроке мы узнали много нового. А подведем итоги нашей работы мы необычным способом. Составим синквейн. Синквейн – это творческая работа, которая имеет короткую форму стихотворения, состоящего из пяти нерифмованных строк.

Синквейн – это не простое стихотворение оно должно быть написано по следующим правилам:

1 строка – одно существительное, выражающее главную тему синквейна.

2 строка – два прилагательных, выражающих главную мысль.

3 строка – три глагола, описывающие действия в рамках темы.

4 строка – фраза, несущая определенный смысл.

5 строка – заключение в форме существительного (ассоциация с первым словом).

Ребята предлагают варианты, все вместе составляем синквейн.

Числа

Простые, составные

Находить, делить, раскладывать

Правят миром

Знание

VI. Домашнее задание

Стр.19-20 №115, 116, 117, 118. Творческое задание: Узнать, какие числа называют дружественными, подготовить сообщение в виде сказки или детективного расследования.

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Yandex.RTB R-A-339285-1

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Определение 1

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Определение 2

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Определение 3

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Определение 4

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а, то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Определение 5

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Теорема 1

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Доказательство 1

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а. Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 < b 1 < b было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · (q 1 · q) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · (q 1 · q) . Видно, что b 1 – это делитель для числа а. Неравенство 1 < b 1 < b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а.

Теорема 2

Простых чисел бесконечно много.

Доказательство 2

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Рассмотрим пошагово.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

Переходим к вычеркиванию чисел, кратных 5 . Получим:

Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

Перейдем к формулировке теоремы.

Теорема 3

Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

Доказательство 3

Необходимо обозначить b наименьший делитель составного числа а. Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа, которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Пример 1

Доказать что число 898989898989898989 является составным.

Решение

Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

Пример 2

Определить составное или простое число 11723 .

Решение

Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

Отсюда видим, что 11723 < 200 , то 200 2 = 40 000 , а 11 723 < 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 < 11 723 < 109 2 . Отсюда следует, что 11723 < 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

Ответ: 11723 является составным числом.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter