Почему изменился климат. Изменение климата: что ждет Россию Изменение глобального климата земли в последние десятилетия

Солнце. Из-за неравномерности нагревания земной поверхности возникают ветры и океанические течения. Повышенная солнечная активность сопровождается магнитными бурями и заметным повышением температуры воздуха на планете. Климат зависит также от изменений, происходящих с орбитой Земли, ее магнитным полем. Увеличивается сейсмоактивность планеты, активизируется вулканическая деятельность, меняются очертания материков и океанов. Все перечисленное является естественными причинами изменения климата. До некоторых пор только эти факторы и были определяющими. Сюда же можно отнести долговременные циклы такие, как ледниковые периоды. Ориентируясь на солнечную и вулканическую активность, учитывая, что первая ведет к повышению температуры, а вторая – к снижению, можно найти объяснение половины температурных сдвигов до 1950 года. Но за последние два столетия к естественным причинам происходящих изменений добавился еще один фактор. Он является антропогенным, т.е. появившимся в результате деятельности человека. Основное его воздействие - это прогрессирующий парниковый эффект. Его влияние оценивается в 8 раз сильнее влияния колебаний солнечной активности. Именно этим так обеспокоены ученые, общественность и главы государств.Парниковый эффект легко наблюдать в теплицах или парниках. Внутри этих помещений гораздо теплее и более влажно, чем снаружи. То же самое происходит и в масштабах всей планеты. Солнечная энергия проходит через атмосферу и нагревает поверхность Земли. Но та тепловая энергия, которую излучает планета, не может своевременно проникнуть в , т.к. атмосфера задерживает ее, подобно полиэтилену в теплице. Вот и возникает эффект парника. Причина этого явления - наличие в атмосфере планеты газов, которые называются «парниковыми» или «тепличными». В атмосфере парниковые газы присутствовали с момента ее образования. Составляли они всего около 0,1%. Этого оказалось достаточным, чтобы возник естественный парниковый эффект, влияющий на тепловой баланс Земли и обеспечивающий уровень, пригодный . Если бы не он, средняя температура поверхности Земли была бы на 30оС ниже, т.е. не +14оС, как на данный момент, а -17оС.Естественный парниковый эффект и круговорот воды в природе поддерживают жизнь не планете. Антропогенное же увеличение парниковых газов в атмосфере ведет к усилению этого явления и нарушению баланса тепла на Земле. Это происходило последние двести лет развития цивилизации и происходит сейчас. Созданная ею промышленность, автомобильные выхлопы и многое другое выбрасывают в атмосферу огромное количество парниковых газов, а точнее около 22 млрд тонн в год. В связи с этим происходит глобальное потепление, которое вызывает изменение среднегодовой температуры воздуха. За последние сто лет средняя температура Земли выросла на 1оС. Кажется, что не так уж и много. Но этого градуса оказалось вполне достаточным для таяния полярных льдов и ощутимого повышения уровня мирового океана, что, естественно, ведет к определенным последствиям. Существуют процессы, которые можно легко запустить, но впоследствии трудно остановить. К примеру, результатом таяния вечной мерзлоты субарктики стало попадание в атмосферу планеты огромного количества метана. Парниковый эффект усиливается. А пресная вода тающих льдов изменяет теплое течение Гольфстрим, что в свою очередь изменит климат Европы. Понятно, что все эти процессы не могут носить локальный характер. Это коснется всего человечества. Настал момент понять, что планета – живое существо. Она дышит и развивается, излучает и взаимодействует с другими элементами Вселенной. Нельзя истощать ее недра и загрязнять океан, нельзя ради сомнительного удовольствия рубить девственные леса и делить неделимое!

Изменяющийся климат оказывает огромнейшее влияние как на естественные, так и на социально-экономические процессы. В последние годы Межправительственный комитет по изменению климата проанализировал шесть альтернативных сценариев изменения жизни населения, экономики и энергетики в результате глобального повышения температур в течение XXI в.

Главное внимание во время этих исследований уделялось чувствительности, приспособляемости и уязвимости природных и социально-экономических систем. Чувствительность - это способность системы реагировать на изменения климатических условий. Убедительным примером служит показатель изменения строения и функционирования экосистемы любого ранга и производимая ею первичная продукция в зависимости от заданного изменения или колебания температуры приземной части , влажности и количества выпадающих атмосферных осадков. Приспособляемость зависит от заложенных в систему возможностей изменять от наступающих климатических изменений режим работы, скорость и направленность протекающих в ней процессов и возникающие при этом возможности структурирования. Уязвимость определяет степень ущерба, наносимого системе.

В результате изменения глобальных климатических показателей - среднегодовых температур и влажности - произойдут соответствующие изменения ландшафтов суши, повысятся или снизятся скорости денудации и выветривания, видоизменятся ландшафты Мирового океана, расширятся или сузятся шельфы, произойдут существенные изменения в области сельского хозяйства.

Изменения ландшафтов суши

В средних широтах повышение температуры на 1-3,5°С, которое прогнозируется на ближайшее столетие, эквивалентно смещению изотерм на 150-550 км по широте в сторону полюсов и на 150-550 м по высоте. В соответствии с этим начнется перемещение растительных экосистем. Однако в силу своей определенной инертности перемещение фауны и флоры будет отставать от изменений климата, в котором они развивались, и тогда им некоторое время придется существовать в непривычном для себя климатическом режиме. Предполагается, что скорость изменения климата будет выше, чем способность некоторых видов, кроме отдельных животных сообществ, мигрировать в благоприятные для жизнедеятельности места. В результате перемещения климатических областей и зон могут исчезнуть некоторые типы лесного покрова. Растительные экосистемы не будут перемещаться вслед за климатическими условиями как нераздельная их составляющая. Отдельные компоненты растительных биоценозов будут перемещаться с различной скоростью. Ввиду такого неравномерного и избирательного процесса могут возникнуть новые комбинации и ассоциации видов и сообществ, которые создадут неизвестные ранее экосистемы. Леса умеренного пояса потеряют часть видов при сопутствующем увеличении эмиссии углекислого газа, образующегося при окислении отмирающей биомассы.

Предполагается, что треть или половина горных ледников растает. Относительно ледниковых покровов и Гренландии единого мнения нет. Одни ученые считают, что в ближайшие сто лет их площадь, а возможно, и объем не изменятся, другие, наоборот, предсказывают значительное их сокращение.

Пустынные ландшафты окажутся более аридными вследствие значительного повышения температуры воздуха по сравнению с количеством осадков. Вместе с тем существуют расчеты, показывающие, что произойдет миграция пустынных областей в сторону полюсов, а размеры современных пустынь сократятся.

Изменения в области Мирового океана

В первую очередь увеличение температур приведет к некоторому повышению уровня моря и изменению поверхностной и глубинной циркуляции вод океана, что повлияет на распределение и объем питательных веществ, в том числе и углерода, окажет воздействие на биологическую продуктивность. Возросший объем океанских вод и высокие температуры будут способствовать накоплению карбонатов, что приведет к более усиленному изъятию из атмосферы углекислого газа.

Изменение уровня океана в первую очередь зависит от гидрометеорологических факторов, напрямую влияющих на испаряемость и количество атмосферных осадков, а также от дополнительного притока вод, возникающих при таянии покровных и горных ледников, и стока вод с континентальных пространств. Кроме гидрометеорологических факторов на уровень Мирового океана оказывают влияние тектонический фактор, определяющий форму и объем ложа Мирового океана, и экзогенные факторы, в частности геоморфологические процессы, к которым относятся аккумуляция наносов в устьях рек, эстуариях, лиманах и заливах или эрозия берегов. Наблюдаемый за последнее столетие рост уровня океана до 25 см - это результат совместного воздействия всех трех факторов при ведущей роли гидрометеорологических.

От изменения уровня Мирового океана пострадает более половины человечества. Поэтому к существующим проблемам климатические изменения добавят новые, которые весьма значительным образом отразятся на приморских территориях. Эти проблемы связаны с высокой и все время увеличивающейся антропогенной нагрузкой на прибрежные системы, многие из которых в настоящее время находятся в состоянии особого риска. Особенно в бедственном положении находятся мангровые системы, представляющие собой засолоненные прибрежные болота, коралловые рифы и атоллы, а также системы речных дельт и эстуариев.

Рост уровня с сопутствующим увеличением частоты и силы штормовых нагонов, вызванных усилением тропических циклонов, приведет к затоплению низко расположенных приморских территорий, разрушению берегов и береговых сооружений, вызовет изменение скорости и объема аккумуляции и видоизменит условия транспортировки обломочного материала и растворенных веществ. Все это может привести к непредсказуемым последствиям. Согласно прогнозным оценкам, в первую очередь пострадают низменные острова и плоские побережья, на которых располагаются многие крупные города и городские агломерации. При этом надо учитывать, что при наступлении масштабных наводнений вероятны значительные миграции населения с серьезными социально-экономическими и политическими последствиями.

Водные ресурсы

Изменения климата приведут к интенсификации глобального гидрологического цикла и вызовут заметные региональные изменения. Относительно небольшие изменения климата могут вызвать нелинейные изменения суммарного испарения и влажности почвы, что приведет к относительно небольшим видоизменениям стока, особенно в аридных районах. В отдельных случаях при увеличении среднегодовой температуры на 1-2°С и сокращении общего количества атмосферных осадков на 10% среднегодовой сток сократится примерно на 40-70%. Это потребует значительных капиталовложений для приспособления водного хозяйства к изменившимся условиям. Особенно большие проблемы возникнут в тех регионах, где водопотребление значительно, и в регионах с сильным загрязнением вод.

Сельское хозяйство

Изменение климата окажет серьезное влияние на агросистемы. Это вынудит принимать экстренные меры для приспособления сельского хозяйства к новым условиям.

Климатические воздействия на агросистемы будут весьма сложными и неоднозначными. Ввиду увеличения концентрации углекислого газа возрастут объем и скорости фотосинтеза и как следствие этого - урожайность. Урожай сельскохозяйственных культур возрастет также из-за вовлечения в сельскохозяйственный оборот новых земель. В районах, где земледелие лимитируется притоком теплого воздуха, например в России и Канаде, вероятность увеличения урожая возрастет. В аридных и семиаридных районах, где оно ограничено наличием достаточного количества влаги для растений, изменение климата отразится неблагоприятным образом. Потребности в для орошения будут сильно конкурировать с другими потребителями водных ресурсов - промышленностью и коммунальным хозяйством. Более высокие температуры воздуха будут способствовать ускорению естественного разложения органического вещества почвы, снижая ее плодородие. Вероятность распространения вредителей и болезней растений увеличится.

В целом прогнозируется, что общемировой уровень производства продуктов сельского хозяйства может быть сохранен на современном уровне, но региональные последствия будут варьировать в широких пределах. Общая картина мировой торговли продуктами сельского хозяйства вследствие глобального изменения климата может существенно измениться.

С ожидаемыми изменениями климата связаны и значительные изменения, касающиеся здоровья людей, работы гидроэнергетической промышленности, главным образом водной, транспорта, лесотехнической, металлургической, машиностроительной, горнодобывающей и других отраслей промышленности.

Ни для кого не секрет, что климат нашей планеты меняется, причем в последнее время это происходит очень быстро. В Африке выпадает снег, а в наших широтах летом наблюдается неимоверная жара. Много уже было выдвинуто различных теорий о причинах и вероятных последствиях такого изменения. Одни говорят о грядущем апокалипсисе, другие же убеждают, что ничего страшного в этом нет. Правда Ру попыталась разобраться, в чем причины изменения климата, кто виноват и что делать.

Всему виной таяние арктических льдов…

Арктические льды, которые покрывают Северный Ледовитый океан, не давали замерзнуть зимой жителям умеренных широт. «Сокращение площади арктических льдов напрямую связано с сильными снегопадами зимой в умеренных широтах и с невероятной жарой летом», - говорит Стивен Ваврус, старший научный сотрудник Института экологических исследований Нельсона.

Ученый объяснил, что нагретые области над районами в умеренных широтах и холодный арктический воздух создавали определенную разницу в атмосферном давлении. Массы воздуха двигались с запада на восток, заставляя двигаться океанские течения и порождая сильный ветер.»Сейчас Арктика переходит в новое состояние», - заявляет ученый Дэвид Титлей, который работал на ВМФ США. Он отметил, что процесс таяния льдов идет очень быстро, и к 2020 году Арктика летом будет полностью освобождаться ото льда.

Напомним, что Антарктика и Арктика работают как огромные кондиционеры: любые погодные аномалии достаточно быстро перемещались и разрушались ветрами и течениями. В последнее время из-за таяния льдов температура воздуха в приполярных областях повышается, поэтому естественный механизм «перемешивания» погоды останавливается. В результате этого погодные аномалии (жара, снегопады, морозы или ливни) «застревают» в одном районе намного дольше, нежели раньше.

Глобальное потепление на Земле

Специалисты ООН предрекают нашей планете в ближайшем будущем катастрофы из-за глобального потепления. Сегодня все уже начали привыкать к сумасшедшим выходкам погоды, понимая, что с климатом творится что-то несусветное. Главную угрозу представляет производственная деятельность человека, поскольку в атмосферу выбрасывается очень много углекислого газа. По теориям некоторых экспертов, это задерживает тепловое излучение Земли, ведет к перегреву, напоминая парниковый эффект.

За последние 200 лет концентрация углекислого газа в атмосфере возросла на треть, а средняя температура на планете поднялась на 0,6 градуса. За столетие температура в Северном полушарии планеты выросла больше, нежели за предыдущую тысячу лет. Если на Земле сохранятся такие же темпы промышленного роста, то к концу этого века человечеству грозит глобальное изменение климата - температура повысится на 2-6 градусов, а Мировой океан поднимется на 1,6 метра.

Чтобы этого не произошло, был разработан Киотский протокол, главной целью которого является ограничение выбросов углекислого газа в атмосферу. Следует отметить, что потепление само по себе не так опасно. К нам вернется климат, который был за 50 столетий до нашей эры. Наша цивилизация в тех комфортных условиях развивалась нормально. Не потепление опасно, а его внезапность. Климатические изменения происходят так быстро, что не оставляют человечеству времени приспособиться к этим новым условиям.

Больше всего от климатических изменений пострадают жители Африки и Азии, которые, к тому же, переживают сейчас демографический бум. Как отмечает Роберт Уотсон, руководитель группы экспертов ООН, потепление отрицательным образом скажется на сельском хозяйстве, будут наблюдаться ужасные засухи, что вызовет недостаток питьевой воды и различные эпидемии. К тому же резкое изменение климата приводит к образованию разрушительных тайфунов, которые в последние годы участились.

Последствия глобального потепления

Последствия могут быть действительно катастрофичными. Пустыни разрастутся, наводнения и бури станут чаще, распространятся лихорадка и малярия. В Азии и Африке существенно снизятся урожаи, но зато в Юго-Восточной Азии они вырастут. В Европе участятся наводнения, Голландия и Венеция уйдут в морскую пучину. Новая Зеландия и Австралия будут томиться от жажды, а восточное побережье Соединенных Штатов окажется в зоне разрушительных штормов, будет наблюдаться эрозия берегов. Ледоход в Северном полушарии будет начинаться на две недели раньше. Сократится ледовый покров Арктики примерно на 15 процентов. В Антарктиде лед отступит на 7-9 градусов. Также растают тропический лед в горах Южной Америки, Африки и Тибета. Перелетные птицы будут проводить больше времени на севере.

Чего следует ожидать России от изменения климата?

Россия, по мнению некоторых ученых, пострадает от глобального потепления в 2-2,5 раза сильнее, нежели остальная часть планеты. Связано это с тем, что Российская Федерация утопает в снегах. Белое отражает солнце, а черное - наоборот, притягивает. Повсеместное таяние снегов приведет к изменению отражательной способности и вызовет дополнительный прогрев земель. В результате, в Архангельске смогут выращивать пшеницу, а в Санкт-Петербурге - арбузы. Глобальное потепление может нанести сильный удар и по экономике России, так как начнет таять вечная мерзлота под городами Крайнего Севера, где расположены трубопроводы, на которых и держится наша экономика.

Что же делать?

Сейчас проблему контроля над выбросами углекислого газа в атмосферу решают при помощи системы квот, предусмотренной Киотским протоколом. В рамках этой системы правительства различных стран устанавливают лимиты энергетическим и иным предприятиям на выбросы веществ, загрязняющих атмосферу. В первую очередь, это касается двуокиси углерода. Эти разрешения свободно можно купить и продать. Например, некоторое промышленное предприятие сократило объем выбросов, в результате чего у них образовался «излишек» квоты.

Данные излишки они продают другим предприятиям, которым дешевле их купить, нежели предпринимать реальные меры по сокращению выбросов. Нечестные на руку бизнесмены на этом зарабатывают хорошие деньги. Данный подход мало чем улучшает ситуацию с изменением климата. Поэтому некоторые эксперты предлагали ввести прямой налог на выбросы углекислого газа.

Однако это решение так и не было принято. Многие сходятся во мнении, что квотирование или налог малоэффективны. Необходимо стимулировать переход с ископаемого топлива к инновационным энергетическим технологиям, которые бы практически или совсем не повышали содержание в атмосфере парниковых газов. Два экономиста из Университета Макгилла,

Кристофер Грин и Изабель Гальяна, недавно представили проект, в котором предложили ежегодно ассигновать сто миллиардов долларов на исследования в области энергетических технологий. Деньги для этого можно брать с налога на выбросы углекислого газа. Этих средств хватило бы для внедрения новых технологий производства, которые бы не загрязняли атмосферу. По расчетам экономистов, каждый доллар, потраченный на научные исследования, поможет избежать 11 дол. ущерба от изменения климата.

Есть и другой способ. Он трудный и дорогой, однако сможет полностью решить проблему с таянием ледников, если все страны Северного полушария будут действовать решительно и дружно. Некоторые эксперты предлагают создать в Беринговом проливе гидротехническое сооружение, способное регулировать водообмен между Северным Ледовитым,

Тихим и Атлантическим океанами. В одних обстоятельствах оно должно действовать как плотина и препятствовать проходу воды из Тихого океана в Северный Ледовитый, а в других обстоятельствах - как мощная насосная станция, которая будет перекачивать воду из Северного Ледовитого океана в Тихий. Этим маневром искусственно создается режим окончания ледникового периода. Климат меняется, это ощущает на себе каждый житель нашей Земли. Причем меняется очень быстро. Поэтому необходимо странам объединяться и находить оптимальные решения преодоления этой проблемы. Ведь пострадают от изменения климата все.

Мнение эксперта

Российские ученые не всегда согласны с прогнозами и гипотезами своих западных коллег. «Правда.Ру» попросила прокомментировать эту тему заведующего лабораторией климатологии Института географии РАН, доктора географических наук Андрея Шмакина.

Про похолодание у нас говорят только неспециалисты, неметеорологи. Если вы почитаете наши отчеты гидрометеослужбы, там четко говорится об идущем потеплении.

Что всех нас ждет, это не известно никому. Сейчас идет потепление. Последствия самые разные. Есть и положительные, есть и отрицательные. В России просто потепление сильней выражено, чем во многих других регионах мира, это правда, а последствия могут быть и положительные, и отрицательные. Какой эффект, какие плюсы - это надо тщательно считать.

Скажем, отрицательное явление- это да, протаивание мерзлоты, распространение болезней, может быть некоторое учащение лесных пожаров. Но положительное есть тоже. Это сокращение холодного сезона, удлинение сельскохозяйственного сезона, увеличение продуктивности трав и травяных сообществ, и лесов. Много самых разных последствий. Открытие Североморского пути для навигации, удлинение этой навигации. И это не делается на основании каких-то скоропалительных заявлений.

Как быстро идет процесс изменения климата?

Это медленный процесс. К нему в любом случаем можно приспособиться и разработать меры по адаптации. Это процесс масштаба нескольких десятилетий, как минимум, а то и больше. Это не то, что завтра - «все, кранты, хватай мешки - вокзал отходит», такого нет.

У наших ученых много работ на эту тему?

Много. Для начала возьмите, несколько лет назад вышел отчет под названием «Оценочный доклад об изменении климата в России». Он был издан российской гидрометеослужбой с привлечением ученых РАН и университетов. Это серьезный аналитический труд, там все рассмотрено, как меняется климат, какие последствия для разных регионов России.

Можно ли как-то замедлить это процесс? Киотский протокол, например?

Киотский протокол в практическом смысле результатов приносит крайне мало, именно тех, которые заявлены в нем - повлиять на изменение климата, он практически недейственен. Просто из-за того, что сокращение выбросов в нем предусмотрены крайне малы, они практически не влияют на общую глобальную картину этих выборов. Он просто не эффективен.

Другое дело, что он проложил дорогу для соглашений в этой области. Это было первое соглашение такого рода. Если бы затем стороны активно действовали и пытались выработать новые соглашения, то это могло бы принести какие-то результаты. Сейчас стали действовать новые документы вместо Киотского протокола, он закончил свое действие. И они по-прежнему столь же мало эффективны в основном. Какие-то страны вообще не имеют ограничений, какие-то имеют очень небольшие ограничения по выбросам. И вообще это трудно технологически, потому что полностью перейти на такие технологии, чтобы не производить никаких выбросов в атмосферу, практически невозможно. Это очень дорогостоящие мероприятие, на это никто не пойдет. Поэтому уповать только на это…

Какие-то другие меры?

Во-первых, не считается абсолютно установленным, что вообще человек настолько уж сильно влияет на климатическую систему. Он, конечно, влияет, это несомненно, но степень этого влияния - это вопрос дискуссии. Разные ученые придерживаются разных точек зрения.

Меры в основном должны быть по-видимому адаптационные. Потому что даже без всякого человека климат все равно меняется по своим внутренним законам. Просто человечество должно быть готово к изменениям климата в разные стороны и с учетом тех эффектов, которые может это порождать.

Глобальное потепление и другие необратимые перемены в окружающей среде вызывают опасения у многих ученых.

Чем России грозит изменение климата? Смещение климатических зон, нашествия насекомых, губительные природные катаклизмы и неурожаи - в подборке РИА Новости.

Изменение климата привело к нашествию клещей в России

Изменение климата привело к сильному росту численности и быстрому распространению клещей в центральной России, на Севере, в Сибири и на Дальнем Востоке, сообщает Всемирный фонд дикой природы (WWF) России.

"Все более частые, чем ранее, теплые зимы и весны, приводят к тому, что больший процент клещей успешно перезимовывает, их численность растет, и они расползаются по все большей территории. Прогнозы изменений климата на ближайшие десятилетия однозначно говорят, что тенденции не изменятся, а значит, сами клещи не уползут и не погибнут, и проблема будет лишь обостряться", - говорит руководитель программы "Климат и энергетика" WWF России Алексей Кокорин, чьи слова приводит фонд.


По данным WWF, в регионах, где клещи были всегда, их становится больше. Это Пермский край, Вологодская, Костромская, Кировская и другие области, Сибирь и Дальний Восток. Но хуже, что клещи появились там, где их "не знают". Они распространяются и на север Архангельской области, и запад, и даже юг России. Если раньше опасными в отношении клещевого энцефалита считались только два самых северных района Московской области - Талдомский и Дмитровский, то теперь клещи замечены в средней части области и даже на юге, отмечает WWF.

"Самыми опасными месяцами, когда клещи наиболее активны, являются май и июнь, хотя вспышки активности бывают и в конце лета. Самыми опасными местами - мелколесье лиственных пород деревьев - молодые березняки и осинники, опушки и участки леса с высокой травой. Гораздо менее опасны хвойные леса, особенно если в них мало травы", - подчеркивает фонд.

Как добавляют экологи, "зараженность"самих клещей, которые переносят очень тяжелые болезни: энцефалит, болезнь Лайма (боррелиоз), не изменилась. По-прежнему, переносчиками самой опасной болезни - энцефалита - являются лишь 1-2 клеща из тысячи. Других болезней - несколько десятков из тысячи. Но самих клещей стало больше и, главное, появились они в новых местах.

Позитивный эффект от изменений климата для РФ будет недолгим


Положительные последствия изменения климата для российского сельского хозяйства, о которых ранее в интервью заявил глава Минсельхоза Николай Федоров, по-видимому, будут кратковременными и могут сойти на нет уже к 2020 году, сказал РИА Новости координатор программы "климат и энергетика"Всемирного фонда дикой природы (WWF) России Алексей Кокорин.

Министр сельского хозяйства Николай Федоров в интервью в среду заявил, что изменение климата и, в частности, потепление будут в интересах страны, поскольку территория вечной мерзлоты, на которую сегодня приходится около 60% территории РФ, будет сокращаться, а площади земель, благоприятных для ведения сельского хозяйства, напротив, увеличиваться.

По словам Кокорина, Институт сельскохозяйственной метеорологии Росгидромета в Обнинске для всех макрорегионов России достаточно подробно проанализировал возможные сценарии изменения климата и их влияние на условия для ведения сельского хозяйства в стране.

"Получается, что, действительно, некоторое время может быть так называемое позитивное влияние на условную климатическую урожайность. Но потом, в каких-то случаях с 2020 года, в каких-то с 2030, в зависимости от сценария, все равно это идет вниз", - сказал Кокорин.

"То есть, конечно, каких-то катастрофических вещей, которые прогнозируются, скажем, для Узбекистана или для тех или иных африканских стран, не ожидается. Более того, небольшой позитивный и кратковременный эффект ожидается - но тут всегда надо оговариваться, во-первых, о каком периоде времени мы говорим, во-вторых, о том, что потом все равно пойдет, к сожалению, минус", - добавил эксперт.

Кокорин напомнил, что одним из последствий изменения климата будет увеличение масштабов и частоты опасных погодных явлений, которые могут наносить очень значительный ущерб фермерам конкретного региона. Это означает, что необходимо совершенствовать систему страхования в сельском хозяйстве, которая, по словам Кокорина, "с одной стороны, уже работает, с другой - работает пока со сбоями". В частности, необходимо налаживать взаимодействие между производителями сельхозпродукции, страховыми компаниями и региональными подразделениями Росгидромета.

Температура зимой в РФ к середине века может вырасти на 2-5 градусов


Температура в зимний период на всей территории России к середине XXI века может увеличиться из-за глобального изменения климата на два-пять градусов Цельсия, предупреждает МЧС РФ.

"Наибольшее потепление коснется зимы… в середине XXI века повышение на 2-5 градусов прогнозируется на всей территории страны", - говорится в прогнозе центра "Антистихия"на 2013 год. По данным его экспертов, на большей части европейской территории России и западной Сибири повышение температуры зимой в период до 2015 года может составить один-два градуса.

"Повышение летних температур будет менее выраженным и составит 1-3 градуса к середине столетия", - отмечается в документе.

Как сообщалось ранее, темпы потепления на территории России за 100 лет в полтора-два раза быстрее, чем во всем мире, а за последнее десятилетие скорость потепления в стране возросла в несколько раз по сравнению с ХХ веком.

Климат в России уже век теплеет почти вдвое быстрее, чем во всем мире


Темпы потепления на территории России за 100 лет вследствие глобального изменения климата в полтора-два раза быстрее, чем во всем мире, предупреждает МЧС РФ.

"За последние 100 лет повышение температуры в среднем по территории России в полтора-два раза превысило глобальное потепление в целом по Земле", - говорится в прогнозе центра "Антистихия"на 2013 год.

В документе отмечено, что в ХХI веке основная часть территории России "будет находиться в области более значительного потепления по сравнению с глобальным". "При этом потепление будет существенно зависеть от времени года и региона, особенно это коснется Сибири и субарктических регионов", - указано в прогнозе.

В последние годы число опасных природных явлений и крупных техногенных катастроф неуклонно растет. Риски ЧС, возникающие в процессе глобального изменения климата и хозяйственной деятельности, несут значительную угрозу для населения и объектов экономики страны.

По данным МЧС, в зонах возможного воздействия поражающих факторов при авариях на критически важных и потенциально опасных объектах проживают свыше 90 миллионов россиян, или 60% населения страны. Годовой экономический ущерб (прямой и косвенный) от ЧС различного характера может достигать 1,5-2% валового внутреннего продукта - от 675 до 900 миллиардов рублей.

Потепление климата приводит к увеличению количества снега в Сибири

Глобальное изменение климата приводит к разрастанию снежного покрова в Северном полушарии и в Сибири, заявил в четверг директор Института географии РАН Владимир Котляков, выступая на Всемирном форуме снега.

"Возникает парадокс - при потеплении, которое сейчас характерно, становится на Земле больше снега. Это происходит на больших пространствах Сибири, где снега больше, чем было один-два десятилетия назад", - сказал почетный президент Русского географического общества Котляков.

По словам географа, тенденцию разрастания площади снегов в Северном полушарии ученые наблюдают с 1960-х годов, когда начались спутниковые наблюдения за распространением снежного покрова.

"Сейчас эпоха глобального потепления, и по мере увеличения температуры воздуха растет и влагосодержание воздушных масс, поэтому в холодных районах возрастает количество выпадающего снега. Это свидетельствует о большой чувствительности снежного покрова к любым изменениям в составе атмосферы и ее циркуляции, и об этом надо помнить при оценке любых антропогенных воздействий на окружающую среду", - объяснил ученый.

В целом, в Северном полушарии снега гораздо больше, чем в Южном, где его распространению мешает океан. Так, в феврале снегом покрыты 19% площади земного шара, при этом 31% площади Северного полушария и 7,5% площади Южного полушария.
"В августе снег покрывает только 9% всего земного шара. В Северном полушарии снежный покров в течение года меняется более чем в семь раз, а в Южном - менее чем вдвое", - добавил Котляков.

По данным Национального управления океанических и атмосферных исследований (NOAA) США, в декабре 2012 года общая площадь снежного покрова в Северном полушарии стала самой большой за более чем 130 лет наблюдений - она почти на 3 миллиона квадратных километров превысила среднее значение и на 200 тысяч квадратных километров превысила рекорд 1985 года. В среднем, по данным американских метеорологов, площадь снежного покрова в Северном полушарии зимой росла со скоростью около 0,1% в десятилетие.

Европейская Россия не получит бонусов от потепления, заявил ученый


Расчеты процессов глобального потепления в 21 веке на Восточно-Европейской равнине и в Западной Сибири свидетельствуют, что изменения климата не будут иметь никаких положительных экологических и экономических последствий для этих регионов, заявил заведующий кафедрой метеорологии и климатологии географического факультета МГУ Александр Кислов, выступая на международной конференции "Проблемы адаптации к изменению климата".

Кислов, декан географического факультета МГУ Николай Касимов и их коллеги проанализировали с помощью модели CMIP3 географические, экологические и экономические последствия глобального потепления климата на Восточно-Европейской равнине и в Западной Сибири в 21 веке.

В частности, рассматривались изменения стока рек, состояния вечной мерзлоты, распределения растительного покрова, характеристик заболеваемости населения малярией. Кроме того, изучалось, как реагируют на климатические процессы объемы гидроэнергетических и агроклиматических ресурсов, как меняется продолжительность отопительного периода.

"Климатические изменения практически нигде не приводят к положительным результатам с точки зрения экологии и экономики (кроме снижения затрат на отопление), по крайней мере в краткосрочной перспективе. Ожидается значительное ухудшение гидрологических ресурсов в южной части Восточно-Европейской равнины", - делают вывод ученые.

При этом последствия изменения климата гораздо сильнее выражены на Восточно-Европейской равнине, чем в Западной Сибири.

"Отклик отдельных регионов на глобальные изменения очень разный... в каждом регионе главенствует свой природно-экологический процесс, вызванный изменением климата, например, таяние вечной мерзлоты или процессы опустынивания", - заключил Кислов.

Международная конференция "Проблемы адаптации к изменениям климата" (ПАИК-2011) проводится по поручению правительства РФ Росгидрометом при участии других ведомств, РАН, бизнеса и общественных организаций при поддержке Всемирной метеорологической организации (ВМО), Рамочной конвенции ООН по изменению климата, ЮНЕСКО, Всемирного банка и других международных институтов.

Во встрече, оргкомитет которой возглавляет руководитель Росгидромета Александр Фролов, принимают участие глава Межправительственной группы по изменению климата Раджендра Пачаури, спецпредставитель генсека ООН по вопросам уменьшения опасности бедствий Маргарета Вальстрем, генсек ВМО Мишешь Жарро, представители Всемирного банка, ЮНЕП, российские и зарубежные климатологи и метеорологи, политики, чиновники, экономисты и бизнесмены.

Длительность пожароопасного периода в РФ увеличится до 2015 г на 40%


МЧС РФ прогнозирует увеличение до 2015 года продолжительности пожароопасного периода в средней полосе России на 40%, то есть почти на два месяца, из-за глобального изменения климата.

"Длительность пожароопасного сезона в среднем широтном поясе России может увеличиться на 50-60 дней, то есть на 30-40%, в сравнении с существующими среднемноголетними значениями", - сообщил в пятницу РИА Новости руководитель Центра "Антистихия"МЧС Владислав Болов.

По его словам, это значительно повысит угрозы и риски масштабных чрезвычайных ситуаций, связанных с природными пожарами.

"Наиболее существенно продолжительность пожароопасной обстановки увеличится на юге Ханты-Мансийского автономного округа, в Курганской, Омской, Новосибирской, Кемеровской и Томской областях, Красноярском и Алтайском краях, а также в Якутии", - сказал Болов.

При этом он отметил, что "по сравнению с текущими значениями, прогнозируется увеличение числа дней с пожароопасной обстановкой до пяти дней за сезон для большей части территории страны".

Прошлым летом и частично осенью на значительной части страны полыхали масштабные природные пожары, вызванные аномальной жарой. В 19 субъектах федерации пострадали 199 населенных пунктов, сгорели 3,2 тысячи домов, погибли 62 человека. Общий ущерб составил свыше 12 миллиардов рублей. В этом году огонь также охватил значительные территории, прежде всего, Дальнего Востока и Сибири.

Лесостепь может прийти в Москву к концу века из-за изменения климата


Москва и Московская область через 50-100 лет после окончания текущего "переходного"периода потепления по климатическим условиям будут похожи на лесостепи Курской и Орловской областей с засушливыми летами и теплыми зимами, считает старший научный сотрудник кафедры метеорологии и климатологии Географического факультета МГУ Павел Торопов.

"После окончания переходного климатического процесса, который происходит в настоящее время, климат придет в свое новое более теплое состояние, через 50-100 лет природные зоны могут измениться. Судя по существующим прогнозам, климатические условия будут ближе к ландшафтам и природным условиям лесостепей, которые в настоящее время наблюдаются в Курской и Орловской областях," - сказал на пресс-конференции в РИА Новости Торопов.

По его словам, Москва и область не останутся без снега в результате потепления климата, но будут наблюдаться жаркие засушливые лета и более теплые, мягкие зимы.

"Климат региона изменится существенно, по всей видимости, но в ближайшие 50 лет без снега мы не останемся и не начнем выращивать абрикосы и персики", - добавил Торопов.

Россия может ежегодно терять до 20% зерна из-за изменений климата


Россия может в ближайшие пять-десять лет ежегодно терять до 20% зернового урожая из-за глобального изменения климата на планете и роста засушливости в южных регионах Союзного государства РФ и Белоруссии, говорится в оценочном докладе последствий изменения климата для Союзного государства, опубликованном на сайте Росгидромета.

Доклад "О стратегических оценках последствий изменений климата в ближайшие 10-20 лет для природной среды и экономики Союзного государства"был рассмотрен на заседании совета министров Союзного государства 28 октября 2009 года.

По данным Росстата, на 1 декабря 2009 года сбор зерновых во всех категориях хозяйств составил 102,7 миллиона тонн в бункерном весе. Это соответствует 95,7 миллиона тонн в весе после доработки при среднем значении удельного веса неиспользуемых зерновых отходов в 6,8% в 2004-2008 годах.

В докладе говорится, что важнейшей негативной особенностью ожидаемых изменений климата является сопровождающий процессы потепления рост засушливости в южных регионах Союзного государства.

"Ожидаемый рост засушливости климата может привести к снижению урожайности в основных зернопроизводящих районах России (потенциальные ежегодные потери объемов сбора зерновых культур, при сохранении существующей системы землеобработки и применяемых селекционных видов, могут в ближайшие пять-десять лет достигать в отдельные годы до 15-20% валового сбора зерна), но не окажет, по-видимому, значимого отрицательного влияния на сельское хозяйство достаточно увлажненной Нечерноземной зоны", - отмечается в докладе.

Согласно докладу, в Белоруссии и ряде регионов европейской территории РФ ухудшатся условия произрастания и формирования урожая средних и поздних сортов картофеля, льна, овощных культур (капуста), второго укоса трав.

В документе предлагается для использования дополнительных ресурсов тепла увеличить удельный вес более теплолюбивых и засухоустойчивых культур, расширить пожнивные (поукосные) посевы и объемы ирригационных работ, внедрить системы капельного орошения.

Граница вечной мерзлоты в Арктике отступила до 80 км из-за потепления


Граница вечной мерзлоты в арктических районах России за последние десятилетия отступила вследствие глобального потепления до 80 километров, что усилило процессы деградации почвы, сообщает во вторник МЧС РФ.

Общая площадь районов вечной мерзлоты в России составляет около 10,7 миллиона квадратных километров или порядка 63% территории страны. Здесь сосредоточено более 70% разведанных запасов нефти, порядка 93% природного газа, значительные залежи каменного угля, создана также разветвленная инфраструктура объектов топливно-энергетического комплекса.

"Южная граница ВМ за несколько последних десятилетий сместилась на расстояние от 40 до 80 километров... Усилились процессы деградации (грунта) - появились участки сезонного протаивания (талики) и явления термокарста", - говорится в прогнозе чрезвычайной обстановки на территории РФ на 2012 год, подготовленном МЧС России.

Ведомство также фиксирует изменения температурных режимов верхнего слоя вечной мерзлоты за последние 40 лет.

"Данные наблюдений демонстрируют практически повсеместное увеличение, начиная с 1970 года, среднегодовой температуры верхнего слоя ВМ. На севере европейской территории России оно составило 1,2-2,4 градуса, на севере Западной Сибири - 1, Восточной Сибири - 1,3, в центральной Якутии - 1,5 градуса", - сообщается в документе.

При этом МЧС отмечает влияние деградации вечной мерзлоты на устойчивость различных сооружений, прежде всего, жилых зданий, промышленных объектов и трубопроводов, а также автомобильных и железных дорог, взлетно-посадочных полос и линий электропередачи.

"Это явилось одной из главных предпосылок того, что на территории ВМ в последние годы существенно возросло число аварий и различных повреждений вышеперечисленных объектов", - отмечается в прогнозе.

По данным МЧС РФ, только в Норильском промышленном комплексе около 250 сооружений получили существенные деформации, почти 40 жилых домов снесены или запланированы к сносу.

Изменение климата - колебания климата Земли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, по одной из версий, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется как правило (особенно в контексте экологической политики) для обозначения изменения в современном климате (см. глобальное потепление).

Изменения климата обусловлены переменами в земной атмосфере, процессами, происходящими в других частях Земли, таких как океаны, ледники, а также эффектами, сопутствующими деятельности человека. Внешние процессы, формирующие климат, - это изменения солнечной радиации и орбиты Земли.

  • изменение размеров и взаимного расположения материков и океанов,
  • изменение светимости солнца,
  • изменения параметров орбиты Земли,
  • изменение прозрачности атмосферы и ее состава в результате изменений вулканической активности Земли,
  • изменение концентрации парниковых газов (СО2 и CH4) в атмосфере,
  • изменение отражательной способности поверхности Земли (альбедо),
  • изменение количества тепла, имеющегося в глубинах океана.

Климатические изменения на Земле

Погода - это ежедневное состояние атмосферы. Погода является хаотичной не линеарной динамической системой. Климат - это усредненное состояние погоды и он, напротив, стабилен и предсказуем. Климат включает в себя такие показатели как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.

24.Химическое и радиоактивное загрязнение окружающей среды. «Зелёные столицы» Европы.

Представленная работа посвящена теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение поднятых вопросов.
Тема "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" изучается на стыке сразу нескольких взаимосвязанных дисциплин. Для современного состояния науки характерен переход к глобальному рассмотрению проблем тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а в многочисленных монографиях по данной тематике рассмотрены более узкие вопросы проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Однако, требуется учет современных условий при исследовании проблематики обозначенной темы.
Высокая значимость и недостаточная практическая разработанность проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" определяют несомненную новизну данного исследования.
Дальнейшее внимание к вопросу о проблеме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" необходимо в целях более глубокого и обоснованного разрешения частных актуальных проблем тематики данного исследования.
Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" в современной науке, с другой стороны, ее недостаточной разработанностью. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость.
Результаты могут быть использованы для разработки методики анализа "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Теоретическое значение изучения проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" заключается в том, что избранная для рассмотрения проблематика находится на стыке сразу нескольких научных дисциплин.
Объектом данного исследования является анализ условий "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
При этом предметом исследования является рассмотрение отдельных вопросов, сформулированных в качестве задач данного исследования.
Целью исследования является изучение темы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" с точки зрения новейших отечественных и зарубежных исследований по сходной проблематике.
В рамках достижения поставленной цели автором были поставлены и решения следующие задачи:
1. Изучить теоретические аспекты и выявить природу "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)";
2. Сказать об актуальности проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" в современных условиях;
3. Изложить возможности решения тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)";
4. Обозначить тенденции развития тематики "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)";
Работа имеет традиционную структуру и включает в себя введение, основную часть, состоящую из 3 глав, заключение и библиографический список.
Во введении обоснована актуальность выбора темы, поставлены цель и задачи исследования, охарактеризованы методы исследования и источники информации.
Глава первая раскрывает общие вопросы, раскрываются исторические аспекты проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)". Определяются основные понятия, обуславливается актуальность звучание вопросов "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
В главе второй более подробно рассмотрены содержание и современные проблемы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
Глава третья имеет практический характер и на основе отдельных данных делается анализ современного состояния, а также делается анализ перспектив и тенденций развития "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)".
По результатам исследования был вскрыт ряд проблем, имеющих отношение к рассматриваемой теме, и сделаны выводы о необходимости дальнейшего изучения/улучшения состояния вопроса.
Таким образом, актуальность данной проблемы определила выбор темы работы "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)", круг вопросов и логическую схему ее построения.
Теоретической и методологической основой проведения исследования явились законодательные акты, нормативные документы по теме работы.
Источниками информации для написания работы по теме "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)" послужили базовая учебная литература, фундаментальные теоретические труды крупнейших мыслителей в рассматриваемой области, результаты практических исследований видных отечественных и зарубежных авторов, статьи и обзоры в специализированных и периодических изданиях, посвященных тематике "Загрязнение окружающей среды (в том числе химическое, токсическое и радиоактивное, биологическое и генетическое)", справочная литература, прочие актуальные источники информации.

Еврокомиссия учредила новую премию «Зеленая столица Европы», чтобы оценить европейские города с точки зрения экологии, состояния окружающей среды и перспектив развития экотуризма.
В результате сравнения множества параметров, из 35 городов, претендовавших на получение «зеленой премии», было выбрано восемь финалистов: Амстердам, Бристоль, Копенгаген, Фрибург, Гамбург, Мюнстер, Осло и Стокгольм.

Но абсолютных победителя оказалось два: Стокгольм станет «Зеленой столицей Европы» в 2010 году и Гамбург – в 2011-м.

Столица Швеции, построенная на архипелаге из 14 островов, окружена лесопарковыми оазисами, до которых легко можно добраться из центра города благодаря очень эффективной транспортной системе. Два «зеленых сердца» Стокгольма – Дьюргарден (Djurgården) и Экопаркен (Ekoparken). Экопаркен – первый в мире городской национальный парк, площадью более 30 квадратных километров, имеет особую ценность для экологии. К 2050 году Стокгольм должен полностью перейти на альтернативные источники энергии и стать полностью независимым от невозобновляемых источников энергии, таких как газ, нефть и уголь.Второй по величине европейский порт и самый зеленый город Германии — Гамбург не случайно будет нести звание «Зеленой столицы» в 2011 году. Экологи отмечают эффективные природосберегающие технологии городского хозяйства, а туристы – обилие растений в Гамбурге. Кроме того, расположенный в городе парк Planten un Blomen, включает в себя огромный ботанический сад, тропическую оранжерею и самый обширный в Европе японский сад. А муниципальный Standpark считается самыми большим «зеленым театром» — в парке расположена открытая сцена, а также крупный планетарий.

Факторы, влияющие на климат

Климатические условия играют важную роль в жизни людей. Общепризнано существование более десятка климатообразующих факторов. Как наиболее существенные выделяются следующие:

· концентрация парниковых газов в атмосфере (углекислый газ, метан, закись азота, озон, и др.);

· движение воздушных масс

· концентрация тропосферных аэрозолей;

· солнечная радиация;

· вулканическая активность, вызывающая загрязнение стратосферы аэрозолями серной кислоты;

· автоколебания в системе атмосфера-океан (Эль Ниньо-Южное колебание);

· параметры орбиты Земли.

Было проанализировано воздействие этих факторов на радиационный баланс в пределах десятилетия и последнего столетия.

Одним из важнейших факторов, влияющих на климат планет, является солнечное излучение, падающее на планету. Солнечное излучение, падающее на планету, частично отражается в космическое пространство, частично поглощается. Поглощенная энергия нагревает поверхность планеты.

Исключительно важным фактором, влияющим на климат планет, является наличие или отсутствие атмосферы. Атмосфера планеты влияет на тепловой режим планеты. Плотная атмосфера планеты влияет на климат несколькими путями:

а) парниковый эффект увеличивает температуру поверхности;

б) атмосфера сглаживает суточные колебания температуры;

в) движение воздушных масс (циркуляция атмосферы) сглаживает разность температур между экватором и полюсом.

При рассмотрении вековой изменчивости климата оказалось, что именно накопление парниковых газов в атмосфере определило произошедшее повышение среднеглобальной температуры на 0.5°C. Однако объяснение нынешних и будущих изменений климата только антропогенным фактором покоится на весьма шатком фундаменте, хотя его роль со временем, безусловно, возрастает.

Парниковый эффект — это повышение температуры поверхности планеты и нижних слоев атмосферы планеты из-за того, что атмосфера пропускает солнечное излучение (как говорят, атмосфера прозрачна для солнечного излучения) и задерживает тепловое излучение планеты. Почему это может происходить? Тепловое излучение планеты задерживается (поглощается) сложными молекулами, например углекислым газом СО2, водой Н2О и другими. (Атмосфера прозрачна для солнечного излучения и непрозрачна для теплового излучения планеты). Именно вследствие парникового эффекта температура Венеры повышается с Т = — 44 С° до Т= 462 С°. Венера как бы укрыта слоем углекислого газа, как овощи в парнике — полиэтиленовой пленкой.

Парниковый эффект играет очень важную роль в формировании климата Земли. Например, на Титане из-за парникового эффекта температура повышается на 3 — 5 С°.

Солнечная радиация — это солнечное излучение. Уровень солнечной радиации измеряется на 1 м2земной поверхности в единицу времени (МДж/м2). Ее распределение зависит от широты местности, которой обусловлен угол падения солнечных лучей, и продолжительности дня, что в свою очередь влияет на продолжительность и интенсивность солнечного сияния, показатели суммарной солнечной радиации и среднюю температуру воздуха за год.

20% солнечной радиации, поступающей на Землю, отражается атмосферой. Остальная ее часть достигает земной поверхности — это прямая солнечная радиация. Часть радиации поглощается и рассеивается каплями воды, льда, частицами пыли, облаками.

Такая радиация называется рассеянной. Прямая и рассеянная составляют суммарную. Часть радиации отражается от поверхности Земли — это отраженная радиация.

Движения воздушных масс. Воздушная масса — большой объем воздуха в тропосфере, обладающий характерными свойствами (температурой, влажностью, прозрачностью). Образование различных типов воздушных масс происходит в результате неравномерного нагревания земной поверхности. Вся система движения воздуха называется атмосферной циркуляцией.

Между воздушными массами располагаются переходные области шириной в несколько десятков километров. Эти области называются атмосферными фронтами. Атмосферные фронты находятся в постоянном движении. При этом происходит изменение погоды, смена воздушных масс. Фронты делятся на теплые и холодные.

Теплый фронт образуется, когда теплый воздух наступает на холодный и оттесняет его. Холодный фронт образуется, когда холодный воздух перемещается в сторону теплого и оттесняет его.

Теплый фронт приносит потепление, осадки. Холодный фронт приносит похолодание и прояснение. С атмосферными фронтами связано развитие циклонов и антициклонов.

Подстилающая земная поверхность влияет на распределение солнечной радиации, движение воздушных масс.

Анализ теплой биосферы мелового периода как аналога прогнозируемого потепления показал, что воздействия основных климатообразующих факторов (помимо углекислого газа) недостаточно для объяснения потепления такого масштаба в прошлом. Парниковый эффект необходимой величины отвечал бы многократному увеличению содержания СО2 в атмосфере. Толчком грандиозных климатических изменений в этот период развития Земли, вероятнее всего, стала положительная обратная связь между ростом температуры океанов и морей и увеличением концентрации атмосферной углекислоты.

Реакция молодых деревьев сосны, молодых апельсиновых деревьев, пшеницы на увеличение содержания СО2 в окружающей среде в диапазоне от 400 до 800 ppm почти линейна и положительна. Эти данные можно легко перенести на различные уровни обогащения СО2 и на различные виды растений. К воздействию возрастающего количества углекислого газа в атмосфере относится и увеличение массы лесов США (на 30% с 1950 г.). Больший стимулирующий эффект рост СО2 производит на растения, произрастающие в более засушливых (стрессовых) условиях. А интенсивный рост растительных сообществ, как утверждают авторы обзора, неизбежно приводит к увеличению суммарной массы животных и оказывает положительное воздействие на биоразнообразие в целом. Отсюда следует оптимистичный вывод: “В результате увеличения атмосферного СО2 мы живем во все более и более благоприятных условиях окружающей среды. Наши дети будут наслаждаться жизнью на Земле с гораздо большим количеством растений и животных. Это замечательный и непредвиденный подарок от индустриальной революции”.

Безусловно, колебания уровня СО2 в атмосфере имели место и в прошлые эпохи, однако никогда эти изменения не происходили столь быстро. Но если в прошлом климатическая и биологическая системы Земли в силу постепенности изменений состава атмосферы “успевали” перейти в новое устойчивое состояние и находились в квазиравновесии, то в современный период при интенсивном, чрезвычайно быстром изменении газового состава атмосферы все земные системы выходят из стационарного состояния. И если даже встать на позицию авторов, отрицающих гипотезу глобального потепления, нельзя не отметить, что последствия такого “выхода из квазистационара”, в частности климатические изменения, могут быть самыми серьезными.

Кроме того, согласно некоторым прогнозам, после достижения максимума концентрации СО2 в атмосфере она начнет падать из-за уменьшения антропогенных выбросов, поглощения углекислоты Мировым океаном и биотой. В этом случае растениям вновь придется адаптироваться к изменившейся среде обитания.

В связи с этим чрезвычайно интересны некоторые результаты математического моделирования сложных последствий возможного изменения климата Земли.

Эксперименты с трехмерной моделью объединенной системы океан-атмосфера, проведенные американскими исследователями, показали, что в ответ на потепление термохалинная северо-атлантическая циркуляция (Северо-Атлантическое течение) замедляется. Критическая величина концентрации СО2, вызывающая такой эффект, лежит между двумя и четырьмя доиндустриальными величинами содержания СО2 в атмосфере (она равна 280 ppm, а современная концентрация составляет около 360 ppm).

Используя более простую модель системы океан-атмосфера, специалисты провели детальный математический анализ описанных выше процессов. Согласно их расчетам, при росте концентрации углекислого газа на 1% в год (что соответствует современным темпам) Северо-Атлантическое течение замедляется, а при содержании СО2, равном 750 ppm, наступает его коллапс — полное прекращение циркуляции. При более медленном росте содержания углекислоты в атмосфере (и температуры воздуха) — например на 0.5% в год, при достижении концентрации 750 ppm циркуляция замедляется, но затем медленно восстанавливается. В случае ускоренного роста парниковых газов в атмосфере и связанного с ним потепления Северо-Атлантическое течение разрушается при более низких концентрациях СО2 — 650 ppm. Причины изменения течения в том, что потепление наземного воздуха вызывает рост температуры поверхностных слоев воды, а также повышение давления насыщенного пара в северных районах, а значит, и усиленную конденсацию, из-за чего возрастает масса распресненной воды на поверхности океана в Северной Атлантике.

Оба процесса приводят к усилению стратификации водяного столба и замедляют (или вовсе делают невозможным) постоянное формирование холодных глубинных вод в северной части Атлантики, когда поверхностные воды, охлаждаясь и становясь более тяжелыми, опускаются в придонные области и затем медленно перемещаются к тропикам.

Исследования такого рода последствий потепления атмосферы, проведенные недавно Р. Вудом с сотрудниками, дает еще более интересную картину возможных событий. Помимо уменьшения общего атлантического переноса на 25% при современных темпах роста парниковых газов произойдет “отключение” конвекции в Лабрадорском море — одном из двух северных центров формирования холодных глубинных вод. Причем это может иметь место уже в период от 2000 до 2030 г.

Указанные колебания Северо-Атлантического течения могут повлечь за собой весьма серьезные последствия. В частности, при отклонении распределения потоков тепла и температуры от современного в атлантическом регионе Северного полушария средние температуры приземного воздуха над Европой могут существенно понизиться. Более того, изменения в скорости Северо-Атлантического течения и нагрева поверхностных вод могут уменьшить поглощение океаном СО2(по расчетам упомянутых специалистов — на 30% при удвоении концентрации углекислого газа в воздухе), что следует учитывать и в прогнозах будущего состояния атмосферы, и в сценариях выбросов парниковых газов. Существенные изменения могут произойти и в морских экосистемах, включая популяции рыб и морских птиц, зависящих не только от специфических климатических условий, но и от питательных веществ, которые выносятся к поверхности холодными океаническими течениями. Здесь мы хотим подчеркнуть чрезвычайно важный момент, упомянутый выше: последствия роста парниковых газов в атмосфере, как видно, могут быть гораздо сложнее, чем однородное потепление приземной атмосферы.

При моделировании обмена углекислым газом приходится учитывать и воздействие на газоперенос состояния границы раздела океана и атмосферы. В течение ряда лет в лабораторных и натурных экспериментах исследовались интенсивность переноса СО2 в системе вода-воздух. Рассматривалось воздействие на газообмен ветроволновых условий и дисперсной среды, образующейся вблизи границы раздела двух фаз (брызги над поверхностью, пена, воздушные пузырьки в толще воды). Оказалось, что скорость газопереноса при изменении характера волнения от гравитационно-капиллярного к гравитационному существенно увеличивается. Этот эффект (помимо повышения температуры поверхностного слоя океана) может внести дополнительный вклад в поток углекислоты между океаном и атмосферой. С другой стороны, существенным стоком СО2 из атмосферы являются осадки, интенсивно вымывающие, как показали наши исследования, помимо других газовых примесей и углекислый газ. Расчеты с использованием данных о содержании растворенного углекислого газа в дождевой воде и годовой сумме осадков показали, что в океан ежегодно с дождями может поступать 0.2-1 Гт СО2, а общее количество углекислого газа, вымываемого из атмосферы, может достигать величины 0.7-2.0 Гт.

Поскольку атмосферный углекислый газ частично поглощают осадки и поверхностные пресные воды, в почвенном растворе повышается содержание СО2 и как следствие этого происходит подкисление среды. В опытах, проведенных в лаборатории, была предпринята попытка исследовать особенности воздействия растворенного в воде СО2 на накопление биомассы растениями. Проростки пшеницы выращивались на стандартных водных питательных средах, в которых в качестве дополнительных источников углерода, помимо атмосферного, служили растворенный молекулярный СО2 и бикарбонат-ион в различных концентрациях. Это достигалось варьированием времени насыщения водного раствора газообразным углекислым газом. Оказалось, что первоначальное повышение концентрации СО2 в питательной среде приводит к стимулированию наземной и корневой массы растений пшеницы. Однако при 2-3-кратном превышении над нормальным содержания растворенного углекислого газа наблюдалось торможение роста корней растений с изменением их морфологии. Возможно, при значительном подкислении среды происходит уменьшение ассимиляции других питательных веществ (азота, фосфора, калия, магния, кальция). Таким образом, опосредованное воздействие повышенной концентрации СО2 должно приниматься во внимание при оценке их влияния на рост растений.

Приведенные в приложении к петиции данные об интенсификации роста растений различных видов и возраста оставляют без ответа вопрос об условиях обеспеченности объектов изучения биогенными элементами. Следует подчеркнуть, что изменение концентрации СО2 должно быть строго сбалансировано с потреблением азота, фосфора, других питательных веществ, света, воды в продукционном процессе без нарушения экологического равновесия. Так, усиленный рост растений при высоких концентрациях СО2 наблюдался в среде, богатой питательными веществами. Например, на заболоченных землях в эстуарии Чесапикского залива (юго-запад США), где произрастают в основном С3 -растения, увеличение СО2 в воздухе до 700 ppm приводило к интенсификации роста растений и увеличению плотности их произрастания. Анализ более 700 агрономических работ показал, что при больших концентрациях СО2 в среде, урожай зерновых в среднем был больше на 34% (там, где в почву вносилось достаточное количество удобрений и воды — ресурсов, имеющихся в изобилии только в развитых странах). Чтобы поднять продуктивность сельскохозяйственных культур в условиях роста углекислоты в воздухе, очевидно понадобится не только значительное количество удобрений, но и средств защиты растений (гербициды, инсектициды, фунгициды и т.д.), а также обширные ирригационные работы. Резонно опасаться, что стоимость этих мероприятий и последствия для окружающей среды окажутся слишком существенными и несоразмерными.

Исследования выявили также роль конкуренции в экосистемах, которая приводит к снижению стимулирующего эффекта высоких концентраций СО2. Действительно, саженцы деревьев одного вида в умеренном климате (Новая Англия, США) и тропиках росли лучше при высокой концентрации атмосферного СО2, однако при совместном выращивании саженцев разных видов продуктивность таких сообществ при тех же условиях не повышалась. Вероятно, конкуренция за питательные вещества сдерживает реакцию растений на повышение углекислого газа.

Изучение адаптивной стратегии и реакции растений на колебания основных факторов, влияющих на изменение климата и характеристики окружающей среды, позволило уточнить некоторые прогнозы. Еще в 1987 г. был подготовлен сценарий агроклиматических последствий современных изменений климата и роста СО2 в атмосфере Земли для Северной Америки. Согласно проведенным оценкам, при увеличении концентрации СО2 до 400 ppm и росте средней глобальной температуры у земной поверхности на 0.5°С урожайность пшеницы в этих условиях увеличится на 7-10%. Но рост температур воздуха в северных широтах особенно проявится в зимнее время и вызовет чрезвычайно неблагоприятные частые зимние оттепели, которые могут привести к ослаблению морозостойкости озимых культур, вымерзанию посевов и повреждению их ледяной коркой. Прогнозируемое увеличение теплого периода вызовет необходимость селекции новых сортов с более продолжительным вегетационным периодом.

Что касается прогнозов урожайности основных сельскохозяйственных культур для России, то происходящий рост средних приземных температур воздуха и рост СО2 в атмосфере, казалось бы, должны иметь положительный эффект. Воздействие только роста углекислого газа в атмосфере может обеспечить рост продуктивности ведущих сельскохозяйственных культур — С3 -растений (хлебных злаков, картофеля, свеклы и др.) — в среднем на 20-30%, тогда как для С4 -растений (кукурузы, проса, сорго, амаранта) этот рост незначителен. Однако потепление, очевидно, повлечет за собой снижение уровня атмосферного увлажнения примерно на 10%, что осложнит земледелие особенно в южной части Европейской территории, в Поволжье, в степных районах Западной и Восточной Сибири. Здесь можно ожидать не только снижения сбора продукции с единицы площади, но и развития эрозионных процессов (особенно ветровых), ухудшения качества почв, в том числе потери ими гумуса, засоления, опустынивания значительных территорий. Было установлено, что насыщение приземного слоя атмосферы толщиной до 1 м избытком СО2 может откликнуться “эффектом пустыни”. Этот слой поглощает восходящие тепловые потоки, поэтому в результате его обогащения диоксидом углерода (в 1.5 раза в сравнении с нынешней нормой) локальная температура воздуха непосредственно у земной поверхности станет на несколько градусов выше средней температуры. Интенсивность испарения влаги из почвы увеличится, что приведет к ее иссушению. Из-за этого в целом по стране может снизиться производство зерна, кормов, сахарной свеклы, картофеля, семян подсолнечника, овощей и т.д. В результате изменятся пропорции между размещением населения и производством основных видов сельскохозяйственной продукции.

Наземные экосистемы, таким образом, весьма чувствительны к увеличению СО2 в атмосфере, причем, поглощая избыточный углерод в процессе фотосинтеза, в свою очередь способствуют и росту атмосферного углекислого газа. Не менее важную роль в формировании уровня СО2 в атмосфере играют процессы почвенного дыхания. Известно, что современное потепление климата вызывает усиленное выделение неорганического углерода из почв (особенно в северных широтах). Модельные расчеты, проведенные с целью оценки отклика наземных экосистем на глобальные изменения климата и уровня СО2 в атмосфере, показали, что в случае только роста СО2 (без климатических изменений) стимуляция фотосинтеза уменьшается при высоких значениях СО2, но выделение углерода из почв растет по мере его аккумуляции в растительности и почвах. Если содержание СО2 в атмосфере стабилизируется, чистая продукция экосистем (результирующий поток углерода между биотой и атмосферой) быстро падает до нуля, так как фотосинтез компенсируется дыханием растений и почв. Ответом наземных экосистем на климатические изменения без воздействия роста СО2, согласно этим расчетам, может стать уменьшение глобального потока углерода из атмосферы в биоту из-за усиления дыхания почв в северных экосистемах и уменьшения чистой первичной продукции в тропиках в результате падения влагосодержания почв. Этот результат подтверждается оценками, согласно которым воздействие потепления на дыхание почв превалирует над воздействием его на рост растений и уменьшает почвенный запас углерода. Совместное воздействие глобального потепления и роста СО2 в атмосфере может увеличить глобальную чистую продукцию экосистем и сток углерода в биоту, однако значительное возрастание почвенного дыхания может компенсировать этот сток в зимний и весенний периоды. Немаловажно, что эти прогнозы реакции наземных экосистем существенно зависят от видового состава растительных сообществ, обеспеченности питательными веществами, возраста древесных пород и значительно варьируют в пределах климатических зон.

Не климатические факторы и их влияние на изменение климата

Парниковые газы

Принято считать, что парниковые газы являются главной причиной глобального потепления. Парниковые газы имеют также значение для понимания климатической истории Земли. Согласно исследованиям, парниковый эффект, возникающий в результате нагревания атмосферы тепловой энергией, удерживаемой парниковыми газами, является ключевым процессом, регулирующим температуру Земли.

В течение последних 600 млн лет концентрация диоксида углерода в атмосфере варьировались от 200 до более чем 5 000 чнм из-за воздействия геологических и биологических процессов. Однако в 1999 г. Вейзер и др. показали, что на протяжении последних десятков миллионов лет нет строгой корреляции между концентрацией парниковых газов и изменением климата и что более важная роль принадлежит тектоническому движению литосферных плит. Позднее Ройер и др. использовали корреляцию СО2 - климат, чтобы вывести значение «чувствительности климата». Есть несколько примеров быстрых изменений концентрации парниковых газов в земной атмосфере, имеющих строгую корреляцию с сильным потеплением, среди которых термальный максимум палеоцена - эоцена, вымирание видов перми - триаса и конец варяжской «Земли - снежка» (snowball earth event).

Растущий уровень диоксида углерода считается главной причиной глобального потепления, начиная с 1950 года. Согласно данным Межгосударственной группы экспертов по изменению климата (МГЭИК) от 2007 года, концентрация СО2 в атмосфере в 2005 году составила 379 чнм3, в доиндустриальный период она составляла 280 чнм3.

Чтобы предотвратить резкое потепление в ближайшие годы, концентрация углекислоты должна быть снижена до уровня, существовавшего до индустриальной эпохи — до 350 частей на миллион (0,035%) (сейчас — 385 частей на миллион и увеличивается на 2 миллионные доли (0,0002%) в год, в основном из-за сжигания ископаемого топлива и вырубки лесов).

Имеется скептическое отношение к геоинженерным методам изъятия углекислоты из атмосферы, в частности, к предложениям захоранивать углекислый газ в тектонических трещинах или закачивать его в породы на океанском дне: изъятие 50 миллионных долей газа по этой технологии будет стоить, по меньшей мере, 20 триллионов долларов, что в два раза больше национального долга США.

Тектоника литосферных плит

На протяжении длительных отрезков времени тектонические движения плит перемещают континенты, формируют океаны, создают и разрушают горные хребты, т. е. создают поверхность, на которой существует климат. Недавние исследования показывают, что тектонические движения усугубили условия последнего ледникового периода: около 3 млн лет назад северо- и южноамериканская плиты столкнулись, образовав Панамский перешеек и закрыв пути для прямого смешивания вод Атлантического и Тихого океанов.

Солнечное излучение:

Солнце является основным источником тепла в климатической системе. Солнечная энергия, превращённая на поверхности Земли в тепло, является неотъемлемой составляющей, формирующей земной климат. Если рассматривать длительный период времени, то в этих рамках Солнце становится ярче и выделяет больше энергии, так как развивается согласно главной последовательности. Это медленное развитие влияет и на земную атмосферу. Считается, что на ранних этапах истории Земли Солнце было слишком холодным для того, чтобы вода на поверхности Земли была жидкой, что привело к т. н. «парадоксу слабого молодого Солнца».На более коротких временных отрезках также наблюдаются изменения солнечной активности: 11-летний солнечный цикл и более длительные модуляции. Однако 11-летний цикл возникновения и исчезновения солнечных пятен не отслеживается явно в климатологических данных. Изменение солнечной активности считается важным фактором наступления малого ледникового периода, а также некоторых потеплений, наблюдаемых между 1900 и 1950 годами. Циклическая природа солнечной активности ещё не до конца изучена; она отличается от тех медленных изменений, которые сопутствуют развитию и старению Солнца.

Изменения орбиты: По своему влиянию на климат изменения земной орбиты сходны с колебаниями солнечной активности, поскольку небольшие отклонения в положении орбиты приводят к перераспределению солнечного излучения на поверхности Земли. Такие изменения положения орбиты называютсяциклами Миланковича , они предсказуемы с высокой точностью, поскольку являются результатом физического взаимодействия Земли, ее спутникаЛуны и других планет. Изменения орбиты считаются главными причинами чередования гляциальных и интергляциальных циклов последнего ледникового периода. Результатомпрецессии земной орбиты являются и менее масштабные изменения, такие как периодическое увеличение и уменьшение площади пустыниСахара .

Вулканизм: Одно сильное извержение вулкана способно повлиять на климат, вызвав похолодание длительностью несколько лет. Например, извержение вулкана Пинатубо в 1991 году существенно повлияло на климат. Гигантские извержения, формирующиекрупнейшие магматические провинции , случаются всего несколько раз в сто миллионов лет, но они влияют на климат в течение миллионов лет и являются причинойвымирания видов. Вначале ученые полагали, что причиной похолодания является эмитированная в атмосферу вулканическая пыль, поскольку она препятствует достигнуть поверхности Земли солнечному излучению. Однако измерения показывают, что большая часть пыли оседает на поверхности Земли в течение шести месяцев.

Вулканы являются также частью геохимического цикла углерода. На протяжении многих геологических периодов диоксид углерода высвобождался из недр Земли в атмосферу, нейтрализуя тем самым количество СО2, изъятого из атмосферы и связанного осадочными породами и другими геологическими поглотителями СО2. Однако этот вклад не сравнится по величине с антропогенной эмиссией оксида углерода, которая, по оценкам Геологической службы США, в 130 раз превышает количество СО2, эмитированного вулканами.

Антропогенное воздействие на изменение климата:

Антропогенные факторы включают в себя деятельность человека, которая изменяет окружающую среду и влияет на климат. В некоторых случаях причинно-следственная связь прямая и недвусмысленная, как, например, при влиянии орошения на температуру и влажность, в других случаях эта связь менее очевидна. Различные гипотезы влияния человека на климат обсуждались на протяжении многих лет. В конце 19-го века в западной части США и Австралии была, например, популярна теория «дождь идёт за плугом» (англ. rain follows the plow).Главными проблемами сегодня являются: растущая из-за сжигания топлива концентрация СО2 в атмосфере, аэрозоли в атмосфере, влияющие на её охлаждение, и цементная промышленность. Другие факторы, такие как землепользование, уменьшение озонового слоя, животноводство и вырубка лесов, также влияют на климат

Сжигание топлива: Начав расти во время промышленной революции в 1850-х годах и постепенно ускоряясь, потребление человечеством топлива привело к тому, что концентрация СО2 в атмосфере возросла с ~280 чнм до 380 чнм. При таком росте спроецированная на конец 21-го века концентрация будет составлять более 560 чнм. Известно, что сейчас уровень СО2 в атмосфере выше, чем когда-либо за последние 750 000 лет. Вместе с увеличивающейся концентрацией метана эти изменения предвещают рост температуры на 1.4-5.6°С в промежутке между 1990 и 2040 годами.

Аэрозоли: Считается, что антропогенные аэрозоли, особенно сульфаты, выбрасываемые при сжигании топлива, влияют на охлаждение атмосферы. Полагают, что это свойство является причиной относительного «плато» на графике температур в середине XX века.

Цементная промышленность: Производство цемента является интенсивным источником выбросов СО2. Диоксид углерода образуется, когдакарбонат кальция (CaCO3) нагревают, чтобы получить ингредиент цемента оксид кальция (СаО или негашёная известь). Производство цемента является причиной приблизительно 5 % выбросов СО2индустриальных процессов (энергетический и промышленный сектора). При затворении цемента то же количество СО2поглощается из атмосферы при протекании обратной реакции СаО + СО2= СаСО3. Поэтому производство и потребление цемента изменяет только локальные концентрации СО2в атмосфере, не изменяя среднее значение.

Землепользование: Существенное влияние на климат оказывает землепользование.

Орошение, вырубка лесов и сельское хозяйство коренным образом меняют окружающую среду. Например, на орошаемой территории изменяется водный баланс. Землепользование может изменить альбедо отдельно взятой территории, поскольку изменяет свойства подстилающей поверхности и тем самым количество поглощаемого солнечного излучения. Например, есть причины предполагать, что климат Греции и других средиземноморских стран поменялся из-за масштабной вырубки лесов между 700 лет до н. э. и началом н. э. (древесина использовалась для строительства, кораблестроения и в качестве топлива), став более жарким и сухим, а те виды деревьев, которые использовались в кораблестроении, не растут больше на этой территории.Согласно исследованию 2007 года Лаборатории реактивного движения (Jet Propulsion Laboratory) средняя температура в Калифорнии возросла за последние 50 лет на 2°С, причём в городах этот рост намного выше. Это является в основном следствием антропогенного изменения ландшафта.

Скотоводство: Согласно отчету ООН «Длинная тень скотоводства» от 2006 года скот является причиной 18% выбросов парниковых газов в мире. Это включает в себя и изменения в землепользовании, т. е. вырубку леса под пастбища. В тропических лесах Амазонки 70% вырубки лесов производится под пастбища, что послужило основной причиной, почему Продовольственная и сельскохозяйственная организация ООН (англ. Food and Agriculture Organization, FAO) в сельскохозяйственном отчёте за 2006 год включила землепользование в сферу влияния скотоводства. В дополнение к выбросам СО2, скотоводство является причиной выброса 65% оксида азота и 37% метана, имеющих антропогенное происхождение. Этот показатель был пересмотрен в 2009 году двумя учёными из Worldwatch Institute: они оценили вклад животноводства в выбросы парниковых газов в 51 % общемирового

Взаимодействие факторов : Влияние на климат всех факторов, как естественных, так и антропогенных, выражается единой величиной – радиационным прогревом атмосферы в Вт/м2.

Извержения вулканов, оледенения, дрейф континентов и смещение полюсов Земли – мощные природные процессы, влияющие на климат Земли. В масштабе нескольких лет вулканы могут играть главную роль. В результате извержения вулкана Пинатубо в 1991 года на Филиппинах на высоту 35 км было заброшено столько пепла, что средний уровень солнечной радиации снизился на 2,5 Вт/м2. Однако эти изменения не являются долгосрочными, частицы относительно быстро оседают вниз. В масштабе тысячелетий определяющим климат процессом будет, вероятно, медленное движение от одного ледникового периода к следующему.

В масштабе нескольких столетий на 2005 год по сравнению с 1750 годом имеется комбинация разнонаправленных факторов, каждый из которых значительно слабее, чем результат роста концентрации в атмосфере парниковых газов, оцениваемый как прогрев на 2,4–3,0 Вт/м2. Влияние человека составляет менее 1% от общего радиационного баланса, а антропогенное усиление естественного парникового эффекта – примерно 2%, с 33 до 33,7 град С. Таким образом, средняя температура воздуха у поверхности Земли увеличилась с доиндустриальной эпохи (примерно с 1750 года) на 0,7 °С

Биосфера. Ее границы.

Биосфера - комплексная оболочка Земли, охватывающая всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, заселенная живыми организмами и преобразованная ими. Биосфера - глобальная экосистема с взаимосвязями, круговоротом веществ и превращением энергии.

Биосфера состоит из живого, или биотического, и неживого, или абиотического, компонентов. Биотический компонент – это вся совокупность живых организмов (по Вернадскому – «живое вещество»). Абиотический компонент – сочетание энергии, воды, определенных химических элементов и других неорганических условий, в которых существуют живые организмы.

Жизнь в биосфере зависит от потока энергии и круговорота веществ между биотическим и абиотическим компонентами. Круговороты веществ называются биогеохимическими циклами. Существование этих циклов обеспечивается энергией Солнца. Земля получает от Солнца ок. 1,3ґ1024 калорий в год. Около 40% этой энергии излучается обратно в космос; 15% поглощается атмосферой, почвой и водой; остальная энергия – это видимый свет, первичный источник энергии для всей жизни на Земле.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Влияние растений на климат и водный режим

Фотосинтез – главный источник кислорода в земной атмосфере . Растения создают условия для дыхания миллиардам живых существ, включая людей. Потребности в кислороде лишь одного человека за 70–80 лет жизни составляют несколько десятков тонн. Если представить, что фотосинтез на планете прекратится, весь кислород атмосферы израсходуется всего за 2000 лет.

Поглощение и испарение воды наземными растениями влияет на водный режим их местообитаний и на климат в целом. За час выделяется до 2,5 г воды с каждого квадратного дециметра листвы. Это составляет ежечасно многие тонны воды с гектара. Одно только дерево березы испаряет в день до 100 л воды.

Увлажняя воздух, задерживая движение ветра, растительность создает особый микроклимат , смягчающий условия существования многих видов. В лесу колебания температуры в течение года и суток меньше, чем на открытых пространствах. Леса сильно изменяют также условия влажности: снижают уровень грунтовых вод, задерживают осадки, способствуют осаждению росы и тумана, предотвращают эрозию почвы. В них возникает особый световой режим, позволяющий тенелюбивым видам расти под пологом более светолюбивых.