Состояние равновесия в биматричных матрицах. Вопросы для самоконтроля по курсу "теория игр"

Пример 1. «Студент -- Преподаватель».

Рассмотрим следующую ситуацию. Студент (игрок А) готовится к зачету, который принимает Преподаватель (игрок В). Можно считать, что у Студента две стратегии - подготовиться к сдаче зачета (+) и не подготовиться (-). У Преподавателя также две стратегии - поставить зачет [+] и не поставить зачета [-].

В основу значений функций выигрыша игроков положим следующие соображения:

Количественно это можно выразить, например, так

Пример 2. Рассмотрим парную игру, в которой каждый из участников имеет следующие возможности для выбора своей линии поведения:

игрок А - может выбрать любую из стратегий А1, …, Аm;

игрок В - любую из стратегий В1, …, Вn;

Если игрок А выбрал стратегию Аi, игрок В - Вj, то в итоге выигрыш игрока А составит аij, игрока В - bij. Выигрыши игроков А и В можно записать в виде двух таблиц.

Таким образом, если интересы игроков различны, но не обязательно противоположны, для описания игры используются две платёжные матрицы. Данный факт и дал название подобным играм - биматричным.

Смешанные стратегии в биматричных играх

В приведенных примерах описаны ситуации, в которых интересы игроков не совпадают. Встает вопрос о том, какие рекомендации необходимо дать игрокам для того, чтобы моделируемая конфликтная ситуация разрешилась. Иными словами, что нужно понимать под решением биматричной игры?

Можно ответить на это вопрос так:

вследствие того, что интересы игроков не совпадают, нам нужно построить такое (компромиссное) решение, которое бы в том или ином, но в одинаковом смысле удовлетворяло обоих игроков.

Не пытаясь сразу выражать эту мысль совсем точно, скажем - нужно поробовать найти некую равновесную ситуацию, явное отклонение от которой одного из игроков уменьшало бы его выигрыш.

Подобный вопрос здесь ставили и при рассмотрении матричных игр. Возникающее при разработке минимаксного подхода понятие равновесной ситуации приводило к поиску седловой точки, которая, существует не всегда - конечно, если ограничиваться только чистыми стратегиями игроков А и В, т.е. стратегиями

Однако при расширении матричной игры путем перехода к смешанным стратегиям, т. е. к такому поведению игроков, при котором они чередуют (чистые) стратегии с определенными частотами:

игрок А - стратегии A1,..., Ат с частотами р1,..., рт, где

а игрок В - стратегии В1,...., Вn, с частотами q1,..., qn, где

выяснилось, что в смешанных стратегиях равновесная ситуация всегда существует. Иными словами, любая матричная игра в смешанных стратегиях разрешима.

Поэтому, рассматривая здесь биматричные игры, разумно попробовать сразу же перейти к смешанным стратегиям игроков (этим мы предполагаем, что каждая игра может быть многократно повторена в неизменных обстоятельствах).

В матричном случае смешивание стратегий приводило к расширению возможности выплат в том смысле, что расчет строился из вычисления средних выигрышей игроков А и В, которые определялись по элементам платежной матрицы А и вероятностям и:

При смешанных стратегиях в биматричных играх также возникают средние выигрыши игроков А и В, определяемые по правилам, в которых уже нет никакой дискриминации игрока В:

2x2 биматричные игры. Ситуация равновесия

Здесь необходимо уделить основное внимание случаю, когда у каждого из игроков имеется ровно две стратегии, т. е. случаю т = п = 2. Поэтому кажется уместным выписать приведенные выше формулы именно для такого случая.

В 2 2 биматричной игре платежные матрицы игроков имеют следующий вид

вероятности

биматричная игра решение

а средние выигрыши вычисляются по формулам

определяет равновесную ситуацию, если для любых р и q, подчиненных условиям

решение стратегия биматричная игра равновесие

одновременно выполнены следующие неравенства

Пояснение. Выписанные неравенства (1) означают следующее: ситуация, определяемая смешанной стратегией (р*, q*), является равновесной, если отклонение от нее одного из игроков при условии, что другой сохраняет свой выбор, приводит к тому, что выигрыш отклонившегося игрока может только уменьшиться. Тем самым, получается, что если равновесная ситуация существует, то отклонение от нее невыгодно самому игроку.

Теорема 1 (Дж. Нэш). Всякая биматричная игра имеет хотя бы одну равновесную ситуацию (точку равновесия) в смешанных стратегиях.

Итак, равновесная ситуация существует. Но как ее найти?

Если некоторая пара чисел (р*, q*) претендует на то, чтобы определять ситуацию равновесия, то для того, чтобы убедиться в обоснованности этих претензий, или, наоборот, доказать их необоснованность, необходимо проверить справедливость неравенств (1) для любого р в пределах от 0 до 1 и для любого q в пределах от 0 до 1. В общем случае число таких проверок бесконечно. И, следовательно, действенный способ определения равновесной ситуации нужно искать где-то в ином месте.

Теорема 2. Выполнение неравенств

Биматричные игры

Абсолютно любая управленческая деятельность не может существовать без конфликтных ситуаций. Это ситуации, где сталкиваются двое или больше сторон с разными интересами. Совершенно естественно, что каждая из сторон хочет решить конфликт в свою пользу и получить максимальную выгоду. Решение такой задачи может быть осложнено тем, что конфликтующая сторона не имеет полной информации о конфликте в целом. Иначе можно сказать, что в конфликтной ситуации необходимо принять оптимальное решение в условиях неопределённости.

Для решения такого рода задач используется математическое моделирование. Введём несколько основных понятий. Математическая модель конфликтной игрой называется игрой. Стороны конфликта - игроки, действие игрока - ход, совокупность ходов - стратегия, результат игры - выигрыш.

Обязательным моментом перед решением задачи является выявление определённых правил. Как правило, эти правила представляют собой совокупность требований и ограничений на действия игроков, обмен информацией игроков о действиях противников, функций выигрышей противников и т.п. Правила должны быть чёткими, иначе игра не состоится.

К настоящему времени существует несколько способов классификации игр. Основным является деление на бескоалиционные конечные парные игры с выигрышами (матричные, позиционные, биматричные) и коалиционные. В данном реферате мы рассмотрим биматричные игры.

Игры с фиксированной суммы - игры, в которых интересы игроков хоть и не совпадают, но не являются полностью противоположными. Частным случаем являются биматричные игры.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец - стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице - выигрыш игрока 2.)

Рассмотрим парную игру, в которой каждый из участников имеет следующие возможности для выбора своей линии поведения:

игрок А - может выбрать любую из стратегий А 1 , …, А m ;

игрок В - любую из стратегий В 1 , …, В n ;

Если игрок А выбрал стратегию А i , игрок В - В j , то в итоге выигрыш игрока А составит а ij , игрока В - b ij . Выигрыши игроков А и В можно записать в виде двух таблиц.

Таким образом, если интересы игроков различны, но не обязательно противоположны, для описания игры используются две платёжные матрицы. Данный факт и дал название подобным играм - биматричным.

Состояние равновесия в биматричных матрицах

Решением биматричной игры есть такое решение, которое в том или ином смысле устраивает обоих игроков. Данная формулировка очень расплывчата, что обуславливается тем, что в биматричных играх довольно трудно чётко сформулировать цели для игроков. Как один из возможных вариантов - желание игрока навредить своему сопернику в ущерб собственному выигрышу, или цель будет противоположна.

Обычно рассматриваются два подхода к решению биматричной игры. Первый - поиск равновесных ситуаций: ищутся условия, когда игра находится в некотором равновесии, которое невыгодно нарушать ни одному из игроков в отдельности. Второй - поиск ситуаций, оптимальных по Парето: нахождение условий, при которых игроки совместными усилиями не могут увеличить выигрыш одного игрока, не уменьшив при этом выигрыш другого.

Остановим своё внимание на первом подходе.

В данном подходе используются смешанные стратегии, т.е. случай, когда игроки чередуют свои чистые стратегии с определёнными вероятностями.

Пусть игрок А выбирает стратегию А 1 , с вероятностью р 1 , А 2 - р 2 , …, А m - p m , причём

Игрок В использует стратегию В 1 с вероятностью q 1 , B 2 - q 2 , …, B n - q n , причём

В качестве критерия "удачности" игры возьмём математические ожидания выигрыша игроков, которые вычисляются по формулам:

Таким образом, можно сформулировать основное определение:

Распределение вероятностей Р * () и Q () определяют равновесную ситуацию, если для любых других распределений P и Q одновременно выполнены следующие неравенства:

Если равновесная ситуация существует, то отклонение от неё невыгодно самому игроку.

Также справедлива теорема Дж. Нэша. Всякая биматричная игра имеет хотя бы одну равновесную ситуацию в смешанных стратегиях.

Московский городской университет управления правительства Москвы

Факультет управления

Кафедра прикладной математики

Реферат

по учебной дисциплине

"Математические методы исследования систем управления"

На тему: "Биматричные игры. Поиск равновесных ситуаций"


1. Биматричные игры

Абсолютно любая управленческая деятельность не может существовать без конфликтных ситуаций. Это ситуации, где сталкиваются двое или больше сторон с разными интересами. Совершенно естественно, что каждая из сторон хочет решить конфликт в свою пользу и получить максимальную выгоду. Решение такой задачи может быть осложнено тем, что конфликтующая сторона не имеет полной информации о конфликте в целом. Иначе можно сказать, что в конфликтной ситуации необходимо принять оптимальное решение в условиях неопределённости.

Для решения такого рода задач используется математическое моделирование. Введём несколько основных понятий. Математическая модель конфликтной игрой называется игрой. Стороны конфликта – игроки, действие игрока – ход, совокупность ходов – стратегия, результат игры – выигрыш.

Обязательным моментом перед решением задачи является выявление определённых правил. Как правило, эти правила представляют собой совокупность требований и ограничений на действия игроков, обмен информацией игроков о действиях противников, функций выигрышей противников и т.п. Правила должны быть чёткими, иначе игра не состоится.

К настоящему времени существует несколько способов классификации игр. Основным является деление на бескоалиционные конечные парные игры с выигрышами (матричные, позиционные, биматричные) и коалиционные. В данном реферате мы рассмотрим биматричные игры.

Игры с фиксированной суммы – игры, в которых интересы игроков хоть и не совпадают, но не являются полностью противоположными. Частным случаем являются биматричные игры.

Биматричная игра – это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец – стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице – выигрыш игрока 2.)

Рассмотрим парную игру, в которой каждый из участников имеет следующие возможности для выбора своей линии поведения:

игрок А – может выбрать любую из стратегий А 1 , …, А m ;

игрок В – любую из стратегий В 1 , …, В n ;

Если игрок А выбрал стратегию А i , игрок В – В j , то в итоге выигрыш игрока А составит а ij , игрока В – b ij . Выигрыши игроков А и В можно записать в виде двух таблиц.

Таким образом, если интересы игроков различны, но не обязательно противоположны, для описания игры используются две платёжные матрицы. Данный факт и дал название подобным играм – биматричным.

2. Состояние равновесия в биматричных матрицах

Решением биматричной игры есть такое решение, которое в том или ином смысле устраивает обоих игроков. Данная формулировка очень расплывчата, что обуславливается тем, что в биматричных играх довольно трудно чётко сформулировать цели для игроков. Как один из возможных вариантов – желание игрока навредить своему сопернику в ущерб собственному выигрышу, или цель будет противоположна.

Обычно рассматриваются два подхода к решению биматричной игры. Первый – поиск равновесных ситуаций: ищутся условия, когда игра находится в некотором равновесии, которое невыгодно нарушать ни одному из игроков в отдельности. Второй – поиск ситуаций, оптимальных по Парето: нахождение условий, при которых игроки совместными усилиями не могут увеличить выигрыш одного игрока, не уменьшив при этом выигрыш другого.

Остановим своё внимание на первом подходе.

В данном подходе используются смешанные стратегии, т.е. случай, когда игроки чередуют свои чистые стратегии с определёнными вероятностями.

Пусть игрок А выбирает стратегию А 1 , с вероятностью р 1 , А 2 – р 2 , …, А m – p m , причём

Игрок В использует стратегию В 1 с вероятностью q 1 , B 2 – q 2 , …, B n – q n , причём

В качестве критерия "удачности" игры возьмём математические ожидания выигрыша игроков, которые вычисляются по формулам:


Таким образом, можно сформулировать основное определение:

Распределение вероятностей Р * (

) и Q () определяют равновесную ситуацию, если для любых других распределений P и Q одновременно выполнены следующие неравенства:

Если равновесная ситуация существует, то отклонение от неё невыгодно самому игроку.

Также справедлива теорема Дж. Нэша. Всякая биматричная игра имеет хотя бы одну равновесную ситуацию в смешанных стратегиях.

3. Общий принцип решения биматричных игр

В первое неравенство системы последовательно подставляются все чистые стратегии игрока А, при предположении, что В придерживается своей оптимальной стратегии. Во второе неравенство подставляются все чистые стратегии игрока В, при предположении, что А придерживается своей оптимальной стратегии.

Полученная система m+n неравенств, решение которой дает значение элементов оптимальных смешанных стратегий (P*,Q*) и платежи, получаемые игроками в точке равновесия.

Пример: борьба за рынок.


Решение задачи

v A =-10×1q 1 +2×1*(1-q 1)+(1-p 1)q 1 -(1-p 1)(1-q 1)=-14×1q 1 +3×1+2q 1 -1

v B =5×1q 1 -2×1*(1-q 1)-(1-p 1)q 1 +(1-p 1)(1-q 1)=9×1q 1 -3×1-2q 1 +1

p 1 =1 тогда v A =2-12q 1

-14×1q 1 +3×1+2q 1 -1

p 1 =0 тогда v A =-1+2q 1

-14×1q 1 +3×1+2q 1 -1

q 1 =1тогда v B =-1+6×1

9×1q 1 -3×1-2q 1 +1

q 1 =0 тогда v B =1–3×1

9×1q 1 -3×1-2q 1 +1

Cоставляем 4 системы, преобразовываем, получаем.

биматричный игра парето

Игра - это идеализированная математическая модель коллективного поведения: несколько индивидуумов (участников, игроков) влияют на ситуацию (исход игры), причем их интересы (их выигрыши при различных возможных ситуациях) различны. Антагонизм интересов рождает конфликт, в то время как совпадение интересов сводит игру к чистой координации, для осуществления которой единственным разумным поведением является кооперация. В большинстве игр, возникающих из анализа социально-экономических ситуаций, интересы не являются ни строго антагонистическими, ни точно совпадающими. Продавец и покупатель согласны, что в их общих интересах договориться о продаже, конечно, при условии, что сделка выгодна обоим. Однако они энергично торгуются при выборе конкретной цены в пределах, определяющихся условиями взаимной выгодности сделки. Подобно этому рядовые избиратели, как правило, согласны отвести кандидатов, представляющих крайние точки зрения.

Однако при избрании одного из двух кандидатов, предлагающих различные компромиссные решения, возникает ожесточенная борьба. Нельзя не согласиться, что большинство напоминающих игры конфликтных ситуаций общественной жизни порождают как конфликтное, так и кооперативное поведение. Поэтому можно сделать вывод, что теория игр является полезным логическим аппаратом для анализа мотивов поведения участников в подобных ситуациях. Она располагает целым арсеналом формализованных сценариев поведения, начиная с некооперативного поведения и до кооперативных соглашений с использованием взаимных угроз. Для каждой игры в нормальной форме использование различных кооперативных и некооперативных концепций равновесия, как правило, приводит к различным исходам. Их сравнение является основным принципом теоретико-игрового анализа и, по-видимому, источником строгих и вместе с тем содержательных рассуждений о побудительных мотивах поведения вытекающих только из структуры игры в нормальной форме.

Во многих социальных науках имеется большое количество моделей, при анализе которых требуется изучать способы выбора стратегий. Приложения теории игр преимущественно развиваются в связи с исследованием экономики.

Это соответствует установкам основоположников теории игр фон Неймана и Моргенштерна. Однако прочная репутация теоретико - игрового подхода утвердилась только после теоремы Дебре - Скарфа, позволяющей рассматривать конкурентное равновесие как результат кооперативных действий. С тех пор целые разделы экономической теории (такие, как теория несовершенной конкуренции или теория экономического стимулирования) развиваются в тесном контакте с теорией игр.

Поиск равновесных концепций, являющихся идеализацией целого спектра некооперативных и кооперативных схем поведения, тесно связан с основами социологии. В современных социологических исследованиях формальные теоретико-игровые модели весьма редки и с математической точки зрения элементарны. И все - таки влияние теории игр кажется нам уже необратимым, по крайней мере на этапе обучения.

Математическая теория предлагает для решения поставленных задач теорию игр, определяемую как раздел математики, ориентированный на построение формальных моделей принятия оптимальных решений в ситуации конкурентного взаимодействия. Данное определение главной задачей теории игр ставит последовательность действий эффективного поведения в условиях конкуренции, конфликтности.).

В теории игр участников конкурирующего взаимодействия называют игроками, каждый из них имеет непустое множество допустимых действий, совершаемых им по ходу игры, которые называются ходами или выборами. Набор всех возможных ходов по одному из списка возможных ходов каждого игрока (участвующих в парах, тройках и т.д. ходов) называется стратегией. Грамотно построенные стратегии взаимно исключают друг друга, т.е. взаимно исчерпывают все способы поведения игроков. Исходом игры называется реализация игроком выбранной им стратегии. Каждому исходу игры соответствует определяемое игроками значение полезности (выигрыша), называемое платежом.

Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, доступности информации и т.д.

  • 1. В зависимости от количества игроков различают парные игры и игры n игроков. Математический аппарат реализации парных игр наиболее проработан. Игры трёх и более игроков исследовать сложнее из-за трудностей технической реализации алгоритмов решения.
  • 2. По количеству стратегий игры бывают конечные и бесконечные. Конечной называется игра с конечным числом возможных стратегий игроков. Если же хотя бы один из игроков имеет бесконечное количество возможных стратегий, то игра называется бесконечной.
  • 3. По характеру взаимодействия игры делятся на:
    • · бескоалиционные: игроки не имеют права вступать в соглашения, образовывать коалиции;
    • · коалиционные (кооперативные) - игроки могут вступать в коалиции.

В кооперативных играх коалиции жестко заданы на этапе постановки задачи и не могут меняться во время игры.

  • 4. По характеру выигрышей игры делятся на:
    • · игры с нулевой суммой (общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю);
    • · игры с ненулевой суммой.
  • 5. По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые, сепарабельные, дуэли и др.

Матричная игра - это конечная парная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 2, столбец - номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец - стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице - выигрыш игрока 2.)

Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.

Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий. В теории математики доказано, что игры этого класса имеют решения, однако пока не разработано практически приемлемых методов их нахождения.

Целью любой игры является максимизация каждым игроком своей выгоды. Смысл математической теории игр, построенной на приведенной выше классификации, состоит в формализации (упрощении) и облегчении оптимального выбора. Множество всех возможных стратегий игр составляет большое число, растущее тем сильнее, чем больше игроков и набор доступных каждому ходов. Так для пары игроков, если условия игры позволяют каждому совершить по n ходов, в игре существует 2n стратегий.

Простой перебор и оценка (сравнение) такого числа стратегий представляют собой технически очень сложную задачу и неприемлемы на практике. Математический аппарат позволяет значительно снизить число требующих анализа и сравнения стратегий, отбросив заведомо неэффективные. Когда же получен ограниченный, разумный для анализа набор точек равновесия (одинаково предпочитаемых всеми игроками исходов игры), на основе анализа выигрышей игроков, выбирается наиболее рациональный результат. При выборе результата существуют два основных подхода, которые дают название окончательной стратегии игры:

  • · Минимаксная стратегия (выбор из максимальных (наихудших) проигрышей минимальных (наилучших).
  • · Максиминная стратегия (выбор из минимальных (наихудших) выигрышей максимальных (наилучших).

Развитием теории игр с использованием методов вероятностного анализа является математическая теория принятия решений. Эта теория оперирует не действительным (актуальным) решением, а средним, которое есть ожидаемое решение игры в течение ее многократного повторения. Данное свойство актуально для решения правовых задач, поскольку нормативный характер права означает, что оно ориентировано на неопределенного субъекта и предполагает многократное повторение правоотношений. Чтобы не вдаваться в глубокие математические выкладки, отметим лишь, что теория принятия решений предлагает систему критериев (например, критерий Гурвица, Хаджи-Лемана, критерий ожидаемого значения), которые с помощью вероятностного анализа исходов игр позволяют осуществить выбор оптимального решения в условиях риска и неопределенности.

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры. Биматричная игра – это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации A i B j каждый из игроков имеет свой выигрыш a ij для первого игрока и b ij – для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. С помощью онлайн-калькулятора можно найти решение биматричной игры , а также ситуации оптимальные по Парето и ситуации устойчивые по Нэшу .

Рассмотрим конфликтную ситуацию, в которой каждый из двух участников имеет следующие возможности для выбора своей линии поведения:

  • игрок А – может выбрать любую из стратегий А 1 ,…,А m ,
  • игрок В – любую из стратегий В 1 ,…,В n .

При этом их совместный выбор оценивается вполне определённо: если игрок А выбрал i-ю стратегию А i , а игрок В – k -ю стратегию В k , то в итоге выигрыш игрока А будет равен некоторому числу a ik , а выигрыш игрока В некоторому, вообще говоря, другому числу b ik .
Последовательно перебирая все стратегии игрока А и все стратегии игрока В, мы сможем заполнить их выигрышами две таблицы.

Первая из таблиц описывает выигрыш игрока А, а вторая – выигрыш игрока В. Обычно эти таблицы записывают в виде матрицы.
Здесь А – платёжная матрица игрока А, В – платёжная матрица игрока В.

Таким образом, в случае, когда интересы игроков различны (но не обязательно противоположны) получаются две платёжные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. Поэтому совершенно естественно звучит название, которое обычно присваивается подобной игре – биматричная .

Равновесие Нэша – равновесие, когда каждый участник игры выбирает стратегию, которая является для него оптимальной при условии, что остальные участники игры придерживаются определенной стратегии.
Равновесие Нэша не всегда является наиболее оптимальным для участников. В этом случае говорят, что равновесие не является Парето-оптимальным .
Чистая стратегия – определенная реакция игрока на возможные варианты поведения других игроков.
Смешанная стратегия – вероятностная (не определенная точно) реакция игрока на поведение других игроков.

Пример №1 . Борьба за рынки сбыта.
Фирма а намерена сбыть партию товара на одном из двух рынков, контролируемых более крупной фирмой b . С этой целью она проводит подготовительную работу, связанную с определенными затратами. Если фирма b разгадает, на каком из рынков фирма а будет продавать свой товар, она примет контрмеры и воспрепятствует "захвату" рынка (этот вариант означает поражение фирмы а); если нет, то фирма а одерживает победу. Предположим, что для фирмы а проникновение на первый рынок более выгодно, чем проникновение на второй, но и борьба на первом рынке требует от нее больших средств. Например, победа фирмы а на первом рынке приносит ей вдвое большую прибыль, чем победа на втором, но зато поражение на первом рынке полностью ее разоряет.
Составим математическую модель этого конфликта, считая фирму а игроком 1 и фирму b игроком 2. Стратегии игрока 1: А 1 – проникновение на рынок 1, А 2 – проникновение на рынок 2; стратегии игрока 2: В 1 – контрмеры на рынке 1, В 2 – контрмеры на рынке 2. Пусть для фирмы а ее победа на 1-м рынке оценивается в 2 единицы, а победа на 2-м рынке – в 1 единицу; поражение фирмы а на 1-м рынке оценивается в -10, а на 2-м в -1. Для фирмы b ее победа составляет соответственно 5 и 1 единицу, а поражение -2 и -1. Получаем в итоге биматричную игру Г с матрицами выигрышей
.
По теореме эта игра может иметь либо чистые, либо вполне смешанные ситуации равновесия. Ситуаций равновесия в чистых стратегиях здесь нет. Убедимся теперь, что данная игра имеет вполне смешанную ситуацию равновесия. Находим , .
Итак, рассматриваемая игра имеет единственную ситуацию равновесия (x 0 ;y 0), где , . Она может быть реализована при многократном повторении игры (то есть при многократном воспроизведении описанной ситуации) следующим образом: фирма а должна использовать чистые стратегии 1 и 2 с частотами 2/9 и 7/9, а фирма b – чистые стратегии 1 и 2 с частотами 3/14 и 11/14. Любая из фирм, отклонившись от указанной смешанной стратегии, уменьшает свой ожидаемый выигрыш.

Пример №2 . Найти ситуации оптимальные по Парето и ситуации устойчивые по Нэшу для биматричной игры.

Пример №3 . Имеются 2 фирмы: первая может произвести одно из двух изделий А 1 и А 2 , вторая – одно из двух изделий B 1 , B 2 . Если первая фирма произведет продукцию A i (i = 1, 2), а вторая - B j (j = 1, 2), то прибыль этих фирм (зависящая от того, являются ли эти изделия взаимодополняющими или конкурирующими), определяется таблицей №1:

В 1 В 2
А 1 (5, 6) (3, 2)
А 2 (2, 1) (5, 3)
Считая, что фирмы заключают между собой соглашение, определить справедливое распределение прибыли, используя арбитражное решение Нэша.