Определение бернулли. Повторные независимые испытания схема и формула бернулли

Схема испытаний Бернулли. Формула Бернулли

Пусть производится несколько испытаний. Причем, вероятность появления события $A$ в каждом испытании не зависит от исходов других испытаний. Такие испытания называются независимыми относительно события А. В разных независимых испытаниях событие А, может иметь либо различные вероятности, либо одну и туже. Мы будем рассматривать лишь такие независимые испытания, в которых событие $A$ имеет одну и ту же вероятность.

Под сложным событием будем понимать совмещение простых событий. Пусть производится n-испытаний. В каждом испытании событие $A$ может появиться или не появиться. Будем считать, что в каждом испытании вероятность появления события $A$ одна и та же и равна $p$. Тогда вероятность $\overline A $ { или не наступления А } равна $P({ \overline A })=q=1-p$.

Пусть требуется вычислить вероятность того, что в n -испытаниях событие $A$ наступит k - раз и $n-k$ раз - не наступит. Такую вероятность будем обозначать $P_n (k)$. Причем, последовательность наступления события $A$ не важна. Например: $({ AAA\overline A , AA\overline A A, A\overline A AA, \overline A AAA })$

$P_5 (3)-$ в пяти испытаниях событие $A$ появилось 3 раза и 2 - не появилось. Такую вероятность можно найти по формуле Бернулли.

Вывод формулы Бернулли

По теореме умножения вероятностей независимых событий, вероятность того, что событие $A$ наступит $k$ раз и $n-k$ раз не наступит, будет равна $p^k\cdot q^ { n-k } $. И таких сложных событий может быть столько, сколько можно составить $C_n^k $. Так как, сложные события несовместны, то по теореме о сумме вероятностей несовместных событий, нам надо сложить вероятности всех сложных событий, а их ровно $C_n^k $. Тогда вероятность появления события $A$ ровно k раз в n испытаниях, есть $P_n ({ A,\,k })=P_n (k)=C_n^k \cdot p^k\cdot q^ { n-k } $ формула Бернулли .

Пример. Игральная кость подбрасывается 4 раза. Найти вероятность того, что единица появится в половине случаев.

Решение. $A=$ { появление единицы }

$ P(A)=p=\frac { 1 } { 6 } \, \,P({ \overline A })=q=1-\frac { 1 } { 6 } =\frac { 5 } { 6 } $ $ P_4 (2)=C_4^2 \cdot p^2\cdot q^ { 4-2 } =\frac { 4! } { 2!\cdot 2! } \cdot 6^2\cdot ({ \frac { 5 } { 6 } })^2=0,115 $

Легко видеть, что при больших значениях n достаточно трудно подсчитать вероятность из-за громадных чисел. Оказывается эту вероятность можно посчитать не только с помощью формулы Бернулли.

1

1. Боголюбов А.Н. Математики. Механики: биографический справочник. – Киев: Наукова думка, 1983.

2. Гулай Т.А., Долгополова А.Ф., Литвин Д.Б. Анализ и оценка приоритетности разделов математических дисциплин, изучаемых студентами экономических специальностей аграрных вузов // Вестник АПК Ставрополья. – 2013. – № 1 (9). – С. 6-10.

3. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Перспективы применения математических методов в экономических исследованиях // Аграрная наука, творчество, рост. – 2013. – С. 255-257.

В математике довольно часто встречаются задачи, в которых присутствует большое количество повторений одного и того же условия, испытания или эксперимента. Результатом каждого испытания будет считаться совершенно другой результат от наступившего предыдущего. Зависимости в результатах так же наблюдаться не будет. В качестве результата испытания можно различить несколько возможностей элементарных последствий: возникновение события (А) или же возникновение события, которое дополняет А.

Тогда попробуем предположить, что вероятность возникновения события Р(А) регулярна и равна р (0<р<1).

Примерами такого испытания может быть большое количество задач, таких как подбрасывание монетки, извлечение из темного мешка черно-белых шаров или же рождение черно-белых кроликов.

Такой эксперимент называют конфигурацией повторных независимых испытаний или схемой Бернулли.

Якоб Бернулли родился в семье фармацевта. Отец пытался наставить сына на медицинский путь, но Я. Бернулли увлекся математикой самостоятельно, а позже это стало его профессией. Ему принадлежат различные трофеи в работах на темы по теории вероятностей и чисел, рядов и дифференциальном исчислении. Изучив теорию вероятности по одной изработ Гюйгенса «О расчетах в азартной игре», Якоб увлекся этим. В данной книге не было даже четкого определения концепции «вероятность». Именно Я. Бернулли ввел в математику большую часть современных понятий теории вероятностей. Так же Бернулли первымвыразил свой вариант закона больших чисел. Имя Якоба носят различные работы, теоремы и схемы: «Числа Бернулли», «Многочлен Бернулли», «Дифференциальное уравнение Бернулли», «Распределение Бернулли» и «Уравнение Бернулли».

Вернемся к повторениям. Как уже было указано выше, то в итоге различных испытаний возможны два исхода: либо появится событие А, либо противоположность этому событию. Сама схема Бернулли обозначает производство n-го количества типовых вольных опытов, и в каждом из этих опытов может появится нужное нам событие А (вероятность этого события известна: Р(А)=р), вероятность противоположного события событию А обозначена за q=P(A)=1-p. Требуется определение вероятности, что при проведении испытаний неизвестного количества событие А появится ровно k раз.

Важно помнить о главном условии при решении задач при помощи схемы Бернулли-это постоянство. Без него схема теряет всякий смысл.

Этой схемой можно пользоваться для решения задач различного уровня сложности: от простых (та же монетка) до сложных (проценты). Однако чаще схема Бернулли применяется в решении таких задач, которые связаны с контролем свойств различной продукции и уверенности в самых разных механизмах. Только для решения задачи до начала работы должны быть известны заранее все условия и значения.

Не все задачи в теории вероятностей сводятся к постоянству в условиях. Даже если взять в пример черные и белые шары в темном мешке: при вытягивании одного шара соотношение количества и цветов шариков в мешке изменилось, а значит изменилась и сама вероятность.

Однако если же условия у нас постоянны, то мы можем точно определить требуемую от нас вероятность того, что событие А произойдет ровно kраз из n возможных.

Этот факт Якоб Бернулли скомпоновал в теорему, которую впоследствии стали называть его именем. «Теорема Бернулли» является одной из главных теорем в теории вероятности. Впервые ее опубликовали в труде Я.Бернулли «Искусство предположений». Что же представляет из себя эта теорема? «Если вероятность р наступления события А в каждом испытании постоянна, то вероятность Рk,n того, что событие наступит k раз в n испытаниях, не зависящих друг от друга равна: , где q=1-p».

В доказательство действенности формулы можно привести задачи.

Задача № 1:

Из n стеклянных банок за месяц хранения k разбиваются. Наугад взяли m банок. Найти вероятность, что среди этих банок l не разобьются. n=250, k=10, m=8,l=4.

Решение: Имеем схему Бернулли со значениями:

p=10/250=0,04 (вероятность того, что банки разобьются);

n=8 (число испытаний);

k=8-4=4 (количество разбитых банок).

Используем формулу Бернулли

Получили:

Ответ: 0,0141

Задача № 2:

Вероятность изготовления неисправного изделия на производстве равна 0,2. Найти вероятность того, что из 10 изготовленных на этом производстве изделий ровно k должны быть исправны. Выполнить решение для k = 0, 1, 10.

Нам интересно событие A - изготовление исправных деталей, случающееся раз в час с вероятностью p=1-0,2=0,8. Надо найти вероятность того, что данное событие совершится k раз. Событию A противоположно событие «не A», т.е. изготовление неисправного изделия.

Следовательно, мы имеем: n=10; p=0,8; q=0,2.

В итоге найдем вероятность того, что из 10 изготовленных изделий все изделия неисправны (k=0), что одно изделие исправно (k=1), что неисправных нет вообще (k=10):

В заключении хотелось бы отметить, что в современности многие ученые пытаются доказать, что «формула Бернулли» не соответствует законам природы и можно решить задачи, не применяя ее к использованию. Конечно это возможно, большинство задач по теории вероятности возможно выполнить без формулы Бернулли, главное не запутаться в больших объемах цифр.

Библиографическая ссылка

Хомутова Е.А., Калиниченко В.А. ФОРМУЛА БЕРНУЛЛИ В ТЕОРИИ ВЕРОЯТНОСТИ // Международный студенческий научный вестник. – 2015. – № 3-4.;
URL: http://eduherald.ru/ru/article/view?id=14141 (дата обращения: 12.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Пусть относительно события А проводится n испытаний. Введем события: Аk -- событие А осуществилось при k-том испытании, $ k=1,2,\dots , n$. Тогда $\bar{A}_{k} $ - противоположное событие (событие А не осуществилось при k-том испытании, $k=1,2,\dots , n$).

Что такое однотипные и независимые испытания

Определение

Испытания называются однотипными по отношению к событию А, если вероятности событий $А1, А2, \dots , Аn$ совпадают: $Р(А1)=Р(А2)= \dots =Р(Аn)$ (т.е. вероятность появления события А в одном испытании постоянна во всех испытаниях).

Очевидно, что в этом случае вероятности противоположных событий также совпадают: $P(\bar{A}_{1})=P(\bar{A}_{2})=...=P(\bar{A}_{n})$.

Определение

Испытания называются независимыми по отношению к событию А, если события $А1, А2, \dots , Аn$ независимы.

В этом случае

При этом равенство сохраняется при замене любого события Аk на $\bar{A}_{k} $.

Пусть по отношению к событию А проводится серия из n однотипных независимых испытаний. Ведем обозначения: р -- вероятность осуществления события А в однoм испытании; q -- вероятность противоположного события. Таким образом, Р(Ак)=р, $P(\bar{A}_{k})=q$ для любого k и p+q=1.

Вероятность того, что в серии из n испытаний событие А осуществится ровно k раз (0 ≤ k ≤ n), вычисляется по формуле:

$P_{n} (k)=C_{n}^{k} p^{k} q^{n-k} $ (1)

Равенство (1) называется формулой Бернулли.

Вероятность того, что в серии из n однoтипных независимых испытаний событие А осуществится не менее k1 раз и не более k2 раз, вычисляется по формуле:

$P_{n} (k_{1} \le k\le k_{2})=\sum \limits _{k=k_{1} }^{k_{2} }C_{n}^{k} p^{k} q^{n-k} $ (2)

Применение формулы Бернулли при больших значениях n приводит к громоздким вычислениям, поэтому в этих случаях лучше использовать другие формулы -- асимптотические.

Обобщение схемы Бернулли

Рассмотрим обобщение схемы Бeрнулли. Если в серии из n независимых испытаний, каждое из которых имеет m попарно несовместимых и возможных результатов Аk с соответствующими вероятностями Рk= рk(Аk). То справедлива формула полиномиального расспредиления:

Пример 1

Вероятность заболевания гриппом во время эпидемии равна 0,4. Найти вероятность того, что из 6 сoтрудников фирмы заболеют

  1. ровно 4 сотрудника;
  2. не более 4-х сотрудников.

Решение. 1) Очевидно, что для решения данной задачи применима формула Бернулли, где n=6; k=4; р=0,4; q=1-р=0,6. Применяя формулу (1), получим: $P_{6} (4)=C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,138$.

Для решения этой задачи применима формула (2), где k1=0 и k2=4. Имеем:

\[\begin{array}{l} {P_{6} (0\le k\le 4)=\sum \limits _{k=0}^{4}C_{6}^{k} p^{k} q^{6-k} =C_{6}^{0} \cdot 0,4^{0} \cdot 0,6^{6} +C_{6}^{1} \cdot 0,4^{1} \cdot 0,6^{5} +C_{6}^{2} \cdot 0,4^{2} \cdot 0,6^{4} +} \\ {+C_{6}^{3} \cdot 0,4^{3} \cdot 0,6^{3} +C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,959.} \end{array}\]

Следует заметить, что эту задачу проще решать, используя противоположное событие -- заболело более 4-х сотрудников. Тогда с учетом формулы (7) о вероятностях противоположных событий получим:

Ответ:$\ 0,959$.

Пример 2

В урнe 20 белых и 10 черных шаров. Вынули 4 шара , причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых рисунок 1.

Рисунок 1.

Решение. Пусть событие А состоит в том, что -- достали белый шар. Тогда вероятности $D (A)=\frac{2}{3} ,\, \, D (\overline{A})=1-\frac{2}{3} =\frac{1}{3} $.

По формуле Бернулли требуемая вероятность равна $D_{4} (2)=N_{4}^{2} \left(\frac{2}{3} \right)^{2} \left(\frac{1}{3} \right)^{2} =\frac{8}{27} $.

Ответ: $\frac{8}{27} $.

Пример 3

Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки $\partial =\frac{1}{2} ,\, q=\frac{1}{2} $-вероятность рождения мальчика. В семье не больше трех девочек означает, что девочек родилась либо одна, либо две, либо три, либо в семье все мальчики.

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки: $D_{5} (0)=q^{5} =\frac{1}{32} $,

\ \ \

Следовательно, искомая вероятность $D =D_{5} (0)+D_{5} (1)+D_{5} (2)+D_{5} (3)=\frac{13}{16} $.

Ответ: $\frac{13}{16} $.

Пример 4

Первый стрeлок при одном выстриле может попасть в десятку с вероятностью 0,6 в девятку с вероятностью 0,3, а в восьмерку с вероятностью 0,1. Какая вероятность того, что при 10 выстрелах он попадет в десятку шесть раз, в девятку три раза и в восьмерку 1 раз?

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обычно эти два исхода называются “успехом” (У) или “неудачей” (Н) и соответствующие вероятности обозначают p и q . Ясно, что p  0, q ³ 0 и p +q =1.

Пространство элементарных событий каждого испытания состоит из двух событий У и Н.

Пространство элементарных событий n испытаний Бернулли содержит 2 n элементарных событий, представляющих собой последовательности (цепочки) из n символов У и Н. Каждое элементарное событие является одним из возможных исходов последовательности n испытаний Бернулли. Поскольку испытания независимы, то, по теореме умножения, вероятности перемножаются, то есть вероятность любой конкретной последовательности - есть произведение, полученное при замене символов У и Н на p и q соответственно, то есть, например: Р ()={У У Н У Н... Н У }=p p q p q ... q q p .

Отметим, исход испытания Бернулли часто обозначают 1 и 0, и тогда элементарное событие в последовательности n испытаний Бернулли - есть цепочка, состоящая из нолей и единиц. Например:  =(1, 0, 0, ... , 1, 1, 0).

Испытания Бернулли представляют собой важнейшую схему, рассматриваемую в теории вероятностей. Эта схема названа в честь швейцарского математика Я. Бернулли (1654-1705), в своих работах глубоко исследовавших эту модель.

Основная задача, которая нас будет здесь интересовать: какова вероятность того события, что в n испытаниях Бернулли произошло m успехов?

При выполнении указанных условий вероятность того, что при проведении независимых испытаний событиебудет наблюдаться ровноm раз (неважно, в каких именно опытах), определяется по формуле Бернулли :

(21.1)

где - вероятность появленияв каждом испытании, а
- вероятность того, что в данном опыте событиене произошло.

Если рассматривать P n (m) как функцию m , то она задает распределение вероятностей, которое называется биномиальным. Исследуем эту зависимость P n (m) от m , 0£m £n .

События B m (m = 0, 1, ..., n ), состоящие в различном числе появлений события А в n испытаниях, несовместны и образуют полную группу. Следовательно,
.

Рассмотрим соотношение:

=
=
=
.

Отсюда следует, что P n (m+1 )>P n (m), если (n - m)p > (m+1)q , т.е. функция P n (m ) возрастает, если m < np - q . Аналогично, P n (m+1) < P n (m), если (n - m)p < (m+1)q , т.е. P n (m) убывает, если m > np - q .

Таким образом, существует число m 0 ,при котором P n (m) достигает наибольшего значения. Найдем m 0 .

По смыслу числа m 0 имеем P n (m 0)³P n (m 0 -1) и P n (m 0) ³P n (m 0 +1), отсюда

, (21.2)

. (21.3)

Решая неравенства (21.2) и (21.3) относительно m 0 , получаем:

p / m 0 ³ q /(n - m 0 +1) Þ m 0 £ np + p ,

q /(n - m 0 ) ³ p /(m 0 +1) Þ m 0 ³ np - q .

Итак, искомое число m 0 удовлетворяет неравенствам

np - q £ m 0 £np+p. (21.4)

Так как p +q =1, то длина интервала, определяемого неравенством (21.4), равна единице и имеется, по крайней мере, одно целое число m 0 , удовлетворяющее неравенствам (21.4):

1) если np - q - целое число, то существуют два значения m 0 , а именно: m 0 = np - q и m 0 = np - q + 1 = np + p ;

2) если np - q - дробное, то существует одно число m 0 , а именно единственное целое, заключенное между дробными числами, полученными из неравенства (21.4);

3) если np - целое число, то существует одно число m 0 , а именно m 0 = np .

Число m 0 называется наиболее вероятным или наивероятнейшим значением (числом) появления события A в серии из n независимых испытаний.

На этом уроке будем находить вероятность наступления события в независимых испытаниях при повторении испытаний. Испытания называются независимыми, если вероятность того или иного исхода каждого испытания не зависит от того, какие исходы имели другие испытания . Независимые испытания могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления некоторого события во всех испытаниях одна и та же, во втором случае она меняется от испытания к испытанию.

Примеры независимых повторных испытаний :

  • выйдет из строя один из узлов прибора или два, три узла, причём выход из строя каждого узла не зависит от другого узла, а вероятность выхода из строя одного узла постоянна во всех испытаниях;
  • произведённая в некоторых постоянных технологических условиях деталь, или три, четыре, пять деталей, окажутся нестандартными, причём одна деталь может оказаться нестандартной независимо от любой другой детали и вероятность того, что деталь окажется нестандатной, постоянна во всех испытаниях;
  • из нескольких выстрелов по мишени один, три или четыре выстрела попадают в цель независимо от исходов других выстрелов и вероятность попадания в цель постоянна во всех испытаниях;
  • при опускании монеты автомат сработает правильно один, два или другое число раз независимо от того, какой результат имели другие опускания монеты, и вероятность того, что автомат сработает правильно, постоянна во всех испытаниях.

Эти события можно описать одной схемой. Каждое событие наступает в каждом испытании с одной и той же вероятностью, которая не изменяется, если становятся известными результаты предыдущих испытаний. Такие испытания называются независимыми, а схема называется схемой Бернулли . Предполагается, что такие испытания могут быть повторены как угодно большое количество раз.

Если вероятность p наступления события A в каждом испытании постоянна, то вероятность того, что в n независимых испытаниях событие A наступит m раз, находится по формуле Бернулли :

(где q = 1 – p - вероятность того, что событие не наступит)

Поставим задачу – найти вероятность того, что событие такого типа в n независимых испытаниях наступит m раз.

Формула Бернулли: примеры решения задач

Пример 1. Найти вероятность того, что среди взятых случайно пяти деталей две стандартные, если вероятность того, что каждая деталь окажется стандартной, равна 0,9.

Решение. Вероятность события А , состоящего в том, что взятая случайно деталь стандартна, есть p =0,9 , а вероятность того, что она нестандартна, есть q =1–p =0,1 . Обозначенное в условии задачи событие (обозначим его через В ) наступит, если, например, первые две детали окажутся стандартными, а следующие три – нестандартными. Но событие В также наступит, если первая и третья детали окажутся стандартными, а остальные – нестандартными, или если вторая и пятая детали будут стандартными, а остальные – нестандартными. Имеются и другие возможности наступления события В . Любая из них характеризуется тем, что из пяти взятых деталей две, занимающие любые места из пяти, окажутся стандартными. Следовательно, общее число различных возможностей наступления события В равно числу возможностей размещения на пяти местах двух стандартных деталей, т.е. равно числу сочетаний из пяти элементов по два, а .

Вероятность каждой возможности по теореме умножения вероятностей равна произведению пяти множителей, из которых два, соответствующие появлению стандартных деталей, равны 0,9, а остальные три, соответствующие появлению нестандартных деталей, равны 0,1, т.е. эта вероятность составляет . Так как указанные десять возможностей являются несовместимыми событиями, по теореме сложения вероятность события В , которую обозначим

Пример 2. Вероятность того, что станок в течение часа потребует внимания рабочего, равна 0,6. Предполагая, что неполадки на станках независимы, найти вероятность того, что в течение часа внимания рабочего потребует какой-либо один станок из четырёх обслуживаемых им.

Решение. Используя формулу Бернулли при n =4 , m =1 , p =0,6 и q =1–p =0,4 , получим

Пример 3. Для нормальной работы автобазы на линии должно быть не менее восьми автомашин, а их имеется десять. Вероятность невыхода каждой автомашины на линию равна 0,1. Найти вероятность нормальной работы автобазы в ближайший день.

Решение. Автобаза будет работать нормально (событие F ), если на линию выйдут или восемь (событие А ), или девять (событие В ), или все десять автомашин событие (событие C ). По теореме сложения вероятностей,

Каждое слагаемое находим по формуле Бернулли . Здесь n =10 , m =8; 9; 10 , а p =1-0,1=0,9 , так как p должно означать вероятность выхода автомашины на линию; тогда q =0,1 . В результате получим

Пример 4. Пусть вероятность того, что покупателю необходима мужская обувь 41-го размера, равна 0,25. Найти вероятность того, что из шести покупателей по крайней мере двум необходима обувь 41-го размера.