Метод координат в пространстве: формулы и комментарии репетитора. Уравнение плоскости. Как составить уравнение плоскости? Взаимное расположение плоскостей. Задачи

Нормаль плоскости n (вектор нормали к плоскости) – это всякий направленный перпендикуляр к ней (ортогональный вектор). Последующие выкладки по определении нормали зависят от метода задания плоскости.

Инструкция

1. Если задано всеобщее уравнение плоскости – AX+BY+CZ+D=0 либо его форма A(x-x0)+B(y-y0)+C(z-z0)=0, то дозволено сразу записать результат – n(А, В, С). Дело в том, что это уравнение было получено, как задача определения уравнения плоскости по нормали и точке.

2. Для приобретения всеобщего результата, вам потребуется векторное произведение векторов из-за того, что последнее неизменно перпендикулярно начальным векторам. Выходит, векторным произведением векторов, является определенный вектор, модуль которого равен произведению модуля первого (а) на модуль второго (b) и на синус угла между ними. При этом данный вектор (обозначьте его через n) ортогонален a и b – это основное. Тройка этих векторов правая, то есть из конца n кратчайший поворот от a к b совершается вопреки часовой стрелки. – одно из общепризнанных обозначений векторного произведения. Для вычисления векторного произведения в координатной форме, применяется вектор-определитель (см. рис.1)

3. Для того дабы не путаться со знаком «-», перепишите итог в виде: n={nx, ny, nz}=i(aybz-azby)+j(azbx-axbz)+k(axby-aybx), и в координатах: {nx, ny, nz}={(aybz-azby), (azbx-axbz), (axby-aybx)}.Больше того, чтобы не путаться с численными примерами выпишете все полученные значения по отдельности: nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx.

4. Вернитесь к решению поставленной задачи. Плоскость дозволено задать разными методами. Пускай нормаль к плоскости определяется двумя неколлинеарными векторами, причем сразу численно. Пускай даны векторы a(2, 4, 5) и b(3, 2, 6). Нормаль к плоскости совпадает с их векторным произведением и, как только что было выяснено будет равна n(nx, ny, nz),nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx. В данном случае ax=2, ay=4, az=5, bx=3, by=2, bz=6. Таким образом, nx=24-10=14, ny=12-15=-3, nz=4-8=-4. Нормаль обнаружена – n(14, -3, -4). При этом она является нормалью к целому семейству плоскостей.

Под математическим термином нормаль прячется больше привычное на слух представление перпендикуляра. То есть задача нахождения нормали подразумевает поиск уравнения прямой, перпендикулярной к заданной косой либо поверхности, проходящей через определенную точку. В зависимости от того, на плоскости либо в пространстве требуется обнаружить нормаль , данная задача решается по-различному. Разглядим оба варианта задачи.

Вам понадобится

  • умение находить производные функции, знание находить частные производные функции нескольких переменных

Инструкция

1. Нормаль к косой, заданной на плоскости в виде уравнения у = f(x).Находим значение функции, которая определяет уравнение данной косой в точке, в которой ищется уравнение нормали: а = f(x0). Находим производную к данной функции: f"(x). Ищем значение производной в этой же точке: B = f"(x0). Вычисляем значение дальнейшего выражения: C = a – B*x0. Составляем уравнение нормали, которое будет иметь вид: у = B*x + C.

2. Нормаль к поверхности либо косой, заданной в пространстве в виде уравнения f = f(x,y,z).Находим частные производные к данной нам функции: f’x(x,y,z), f’y(x,y,z), f’z(x,y,z). Ищем значение этих производных в точке М(x0,y0,z0) – точка, в которой нужно обнаружить уравнение нормали к поверхности либо пространственной косой: A = f’x(x0,y0,z0), B = f’y(x0,y0,z0), C = f’z(x0,y0,z0). Составляем уравнение нормали, которое будет иметь вид: (x – x0)/A = (y – y0)/B = (z – z0)/C

3. Пример:Обнаружим уравнение нормали к функции у = х – х^2 в точке х = 1.Значение функции в данной точке а = 1 – 1 = 0.Производная к функции у’ = 1 – 2х, в данной точке В = у"(1) = -1.Вычисляем С = 0 – (-1)*1 = 1.Желанное уравнение нормали имеет вид: у = -х + 1

Видео по теме

Полезный совет
Частные производные всякий функции нетрудно обнаружить, представив, что все переменные, помимо той которая является исследуемой – константы.

Задача поиска вектора нормали прямой на плоскости и плоскости в пространстве слишком примитивна. Реально она завершается записью всеобщих уравнений прямой либо плоскости. От того что кривая на плоскости каждого лишь частный случай поверхности в пространстве, то именно о нормалях к поверхности и пойдет речь.

Инструкция

1. 1-й метод Данный метод самый примитивный, но для его понимания требуется умение представления скалярного поля. Однако, и неискушенный в этом вопросе читатель сумеет применять результирующие формулы данного вопроса.

2. Знаменито, что скалярное поле f задается как f=f(x, y, z), а любая поверхность при этом – это поверхность яруса f(x, y, z)=C (C=const). Помимо того, нормаль поверхности яруса совпадает с градиентом скалярного поля в заданной точке.

3. Градиентом скалярно поля (функции 3 переменных) именуется вектор g=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}. Потому что длина нормали значения не имеет, остается лишь записать результат. Нормаль к поверхностиf(x, y, z)-C=0 в точкеM0(x0, y0, z0) n=gradf=iдf/дx+jдf/дy+kдf/дz={дf/дx, дf/дy, дf/дz}.

4. 2-й метод Пускай поверхность задана уравнением F(x, y, z)=0. Дабы дозволено было в будущем провести аналогии с первым методом, следует рассматривать, что производная непрерывной равна нулю, и F задается как f(x, y, z)-C=0 (C=const). Если провести сечение этой поверхности произвольной плоскостью, то возникшую пространственную кривую дозволено считать годографом какой-нибудь вектор-функции r(t)= ix(t)x+jy(t)+kz(t). Тогда производная вектора r’(t)= ix’(t)+jy’(t)+kz’(t) направлена по касательной в некоторой точке M0(x0, y0, z0) поверхности (см. рис.1).

5. Чтобы не появилось путаницы, нынешние координаты касательной прямой следует обозначить, скажем, курсивом (x, y, z). Канонические уравнение касательной прямой, с учетом, что r’(t0) – направляющий вектор, записывается как (x-x(t0))/(dx(t0)/dt)= (y-y(t0))/(dy(t0)/dt)= (z-z(t0))/(dz(t0)/dt).

6. Подставив координаты вектор-функции в уравнение поверхности f(x, y, z)-C=0 и продифференцировав по t вы получите (дf/дx)(дx/дt)+(дf/дy) (дy/дt)+(дf/дz)(дz/дt)=0. Равенство представляет собой скалярное произведение некоторого вектора n(дf/дx, дf/дy, дf/дz) и r’(x’(t), y’(t), z’(t)). Потому что оно равно нулю, то n(дf/дx, дf/дy, дf/дz) и есть желанный вектор нормали . Видимо, что итоги обоих методов одинаковы.

7. Пример (имеет теоретическое значение). Обнаружить вектор нормали к поверхности заданной типичным уравнением функции 2-х переменных z=z(x, y). Решение. Перепишите это уравнение в форме z-z(x, y)=F(x, y, z)=0. Следуя любому из предложных методов, получается, что n(-дz/дx, -дz/дy, 1) – желанный вектор нормали .

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Yandex.RTB R-A-339285-1

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость О х у, то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у, перпендикулярной О х. Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .

Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Пример 1

Задана прямая вида 2 x + 7 y - 4 = 0 _, найти координаты нормального вектора.

Решение

По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты, которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .

Ответ: 2 , 7 .

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Пример 2

Указать нормальный вектор для заданной прямой y - 3 = 0 .

Решение

По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y - 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .

Ответ: 0 , 1 .

Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.

Пример 3

Найти координаты нормального вектора, если дано уравнение прямой x 1 3 - y = 1 .

Решение

Для начала необходимо перейти от уравнения в отрезках x 1 3 - y = 1 к уравнению общего вида. Тогда получим, что x 1 3 - y = 1 ⇔ 3 · x - 1 · y - 1 = 0 .

Отсюда видно, что координаты нормального вектора имеют значение 3 , - 1 .

Ответ: 3 , - 1 .

Если прямая определена каноническим уравнением прямой на плоскости x - x 1 a x = y - y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = (a x , a y) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0

Для решения можно выбирать любой удобный способ.

Пример 4

Найти нормальный вектор заданной прямой x - 2 7 = y + 3 - 2 .

Решение

Из прямой x - 2 7 = y + 3 - 2 понятно, что направляющий вектор будет иметь координаты a → = (7 , - 2) . Нормальный вектор n → = (n x , n y) заданной прямой является перпендикулярным a → = (7 , - 2) .

Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = (7 , - 2) и n → = (n x , n y) запишем a → , n → = 7 · n x - 2 · n y = 0 .

Значение n x – произвольное, следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 - 2 · n y = 0 ⇔ n y = 7 2 .

Значит, нормальный вектор имеет координаты 1 , 7 2 .

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

x - 2 7 = y + 3 - 2 ⇔ 7 · (y + 3) = - 2 · (x - 2) ⇔ 2 x + 7 y - 4 + 7 3 = 0

Полученный результат координат нормального вектора равен 2 , 7 .

Ответ: 2 , 7 или 1 , 7 2 .

Пример 5

Указать координаты нормального вектора прямой x = 1 y = 2 - 3 · λ .

Решение

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

x = 1 y = 2 - 3 · λ ⇔ x = 1 + 0 · λ y = 2 - 3 · λ ⇔ λ = x - 1 0 λ = y - 2 - 3 ⇔ x - 1 0 = y - 2 - 3 ⇔ ⇔ - 3 · (x - 1) = 0 · (y - 2) ⇔ - 3 · x + 0 · y + 3 = 0

Отсюда видно, что координаты нормального вектора равны - 3 , 0 .

Ответ: - 3 , 0 .

Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .

Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) .

Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x - x 1 a x = y - y 1 a y = z - z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = (a x , a y , a z) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = (a x , a y , a z) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В самом общем случае нормаль к поверхности представляет ее локальную кривизну, и, следовательно, направление зеркального отражения (рис. 3.5). Применительно к нашим знаниям можно сказать, что нормалью называется вектор, определяющий ориентацию грани (рис. 3.6).

Рис. 3.5 Рис. 3.6

Во многих алгоритмах удаления невидимых линий и поверхностей используются только ребра и вершины, поэтому, для того чтобы объединить их с моделью освещения, необходимо знать приближенное значение нормали на ребрах и в вершинах. Пусть заданы уравнения плоскостей полигональных граней, тогда нормаль к их общей вершине равна среднему значению нормалей ко всем многоугольникам, сходящимся к этой вершине. Например, на рис. 3.7 направление приближенной нормали в точке V 1 есть:

n v1 = (a 0 + a 1 + a 4 )i + (b 0 + b 1 + b 4 )j + (c 0 + c 1 + c 4 )k , (3.15)

где a 0 , a 1 , a 4 , b 0 , b 1 , b 4 , c 0 , c 1 , c 4 - коэффициенты уравнений плоскостей трех многоугольниковP 0 , P 1 , P 4 , окружающихV 1 . Отметим, что если требуется найти только направление нормали, то делить результат на количество граней необязательно.

Если же уравнения плоскостей не заданы, то нормаль к вершине можно определить, усредняя векторные произведения всех ребер, пересекающихся в вершине. Еще раз, рассматривая вершину V 1 на рис. 3.7, найдем направление приближенной нормали:

n v1 = V 1 V 2 V 1 V 4 +V 1 V 5 V 1 V 2 + V 1 V 4 V 1 V 5 (3.16)

Рис. 3.7 - Аппроксимация нормали к полигональной поверхности

Следует обратить внимание на то, что необходимы только внешние нормали. Кроме того, если полученный вектор не нормируется, то его величина зависит от количества и площади конкретных многоугольников, а также от количества и длины конкретных ребер. Сильнее проявляется влияние многоугольников с большей площадью и более длинными ребрами.

Когда нормаль к поверхности используется для определения ин­тенсивности и для изображения объекта или сцены выполняется перспективное преобразование, то нормаль следует вычислять до перспективного деления. В противном случае направление нор­мали будет искажено, а это приведет к тому, что интенсивность, задаваемая моделью освещения, будет определена неправильно.

Если известно аналитическое описание плоскости (поверхности), то нормаль вычисляется непосредственно. Зная уравнение плоскости каждой грани многогранника, можно найти направление внешней нормали.

Если уравнение плоскости имеет вид:

то вектор нормали к этой плоскости записывается следующим образом:

, (3.18)

где
- единичные векторы осейx,y,z соответственно.

Величина d вычисляется с помощью произвольной точки, принадлежащей плоскости, например, для точки (
)

Пример. Рассмотрим 4-х сторонний плоский многоугольник, описываемый 4-мя вершинами V1(1,0,0), V2(0,1,0), V3(0,0,1) и V4(1,1,1) (см. рис. 3.7).

Уравнение плоскости имеет вид:

x + y + z - 1 = 0.

Получим нормаль к этой плоскости, используя векторное произведение пары векторов, являющихся смежными ребрами к одной из вершин, например, V1:

Во многих алгоритмах удаления невидимых линий и поверхностей используются только ребра или вершины, поэтому, для того, чтобы объединить их с моделью освещения, необходимо знать приближенное значение нормали на ребрах и в вершинах.

Пусть заданы уравнения плоскостей граней многогранника, тогда нормаль к их общей вершине равна среднему значению нормалей ко всем граням, сходящимся в этой вершине.

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

Вектор нормали к поверхности в точке совпадает с нормалью к касательной плоскости в этой точке.

Вектор нормали к поверхности в данной точке - это единичный вектор , приложенный к данной точке и параллельный направлению нормали. Для каждой точки гладкой поверхности можно задать два нормальных вектора, отличающихся направлением. Если на поверхности можно задать непрерывное поле нормальных векторов, то говорят, что это поле задает ориентацию поверхности (то есть выделяет одну из сторон). Если этого сделать нельзя, поверхность называется неориентируемой .

Аналогично определяется вектор нормали к кривой в данной точке. Очевидно, что к кривой к данной точке можно приложить бесконечно много не параллельных векторов нормали (аналогично тому, как к поверхности можно приложить бесконечно много не параллельных касательных векторов). Среди них выбирают два, ортогональных друг к другу: вектор главной нормали, и вектор бинормали .

См. также

Литература

  • Погорелов А. И. Дифференциальная геометрия (6-е издание). М.: Наука, 1974 (djvu)

Wikimedia Foundation . 2010 .

Синонимы :
  • Битва при Треббии (1799)
  • Граммонит

Смотреть что такое "Нормаль" в других словарях:

    НОРМАЛЬ - (фр.). Перпендикуляр к касательной, проведенной к кривой, в данной точке, нормаль которой отыскивается. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НОРМАЛЬ перпендикулярная линия к касательной, проведенной к… … Словарь иностранных слов русского языка

    нормаль - и, ж. normale f. <лат. normalis. 1. мат. Перпендикуляр к касательной прямой или плоскости, проходящий через точку касания. БАС 1. Нормальная линия, или нормаль. В аналитической геометрии так называется прямая линия, перпендикулярная к… … Исторический словарь галлицизмов русского языка

    нормаль - перпендикуляр. Ant. параллель Словарь русских синонимов. нормаль сущ., кол во синонимов: 3 бинормаль (1) … Словарь синонимов

    НОРМАЛЬ - (от лат. normalis прямой) к кривой линии (поверхности) в данной ее точке прямая, проходящая через эту точку и перпендикулярная к касательной прямой (касательной плоскости) в этой точке …

    НОРМАЛЬ - устаревшее название стандарта … Большой Энциклопедический словарь

    НОРМАЛЬ - НОРМАЛЬ, нормали, жен. 1. Перпендикуляр к касательной прямой или плоскости, проходящий через точку касания (мат.). 2. Деталь установленного заводом образца (тех.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    нормаль - нормальный вертикальный стандартный реальный — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы нормальныйвертикальныйстандартныйреальный EN normal … Справочник технического переводчика

    нормаль - и; ж. [от лат. normalis прямолинейный] 1. Матем. Перпендикуляр к касательной прямой или плоскости, проходящей через точку касания. 2. Техн. Деталь установленного образца. * * * нормаль I (от лат. normalis прямой) к кривой линии (поверхности) в… … Энциклопедический словарь

    НОРМАЛЬ - (франц. normal нормаль, норма, от лат. normalis прямой) 1) Н. в стандарт и з а ц и и устаревшее назв. стандарта. 2) Н. в математике Н. к кривой (поверхности) в данной точке наз. прямую, проходящую через эту точку и перпендикулярную к касат.… … Большой энциклопедический политехнический словарь

    нормаль - normalė statusas T sritis fizika atitikmenys: angl. normal vok. Normale, f rus. нормаль, f pranc. normale, f … Fizikos terminų žodynas

Книги

  • Геометрия алгебраических уравнений, разрешимых в радикалах: С приложениями в численных методах и вычислительной геометрии , Кутищев Г.П.. В этой книге, на теоретическом уровне несколько выше школьного, очень подробно рассмотрены алгебраические уравнения, допускающие решение в элементарных операциях, или решение в радикалах. Эти…