Философские проблемы создания искусственного интеллекта. Знание как основа. Проблема определения искусственного интеллекта

ВВЕДЕНИЕ
XX столетие – уникальный по своим особенностям и содержанию этап мировой истории. Он отличается не виданной ранее динамичностью и сложностью социального, научно-технического и культурного развития, глубиной и значительностью происходящих в них перемен, необычной трудностью проблем, вставших перед человечеством.
Динамичные перемены в социальной и культурной жизни человечества вызваны успехами науки и техники. На смену длившемуся многие тысячелетия медленному прогрессу человеческой цивилизации пришла пора ошеломляюще быстрых перемен, всевозрастающего ускорения процесса наращивания материальных и духовных сил общества.
Процесс науки и техники вызвал в современном обществе глубокие преобразования, затрагивающие все сферы и стороны человеческого бытия. Человек в XX столетии стал обладателем множества научных открытий, совершенных технических средств.

В естествознании первой половины нашего века ведущим направлением была физика. Начиная с 50-х годов, наряду с физикой, химией и биологией все возрастающее значение и влияние на развитие науки и всего уклада нашей жизни начала оказывать кибернетика. Кибернетика становится важнейшим фактором научно-технической революции на высших этапах ее развития.
Кибернетика возникла на стыке многих областей знания математики, логики, семиотики, биологии и социологии.
Обобщающий характер кибернетических идей и методов сближает науку об управлении, каковой является кибернетика, с философией.
Задача обоснования исходных понятий кибернетики, особенно таких, как информация, управление, обратная связь и др. требуют выхода в более широкую, философскую область знаний, где рассматриваются атрибуты материи - общие свойства движения, закономерности познания.
Сама кибернетика как наука об управлении многое дает современному философскому мышлению. Она позволяет более глубоко раскрыть механизм самоорганизации материи, обогащает содержание категории связей, причинности, позволяет более детально изучить диалектику необходимости и случайности, возможности и действительности. Открываются пути для разработки "кибернетической" гносеологии которая позволяет уточнить, детализировать и углубить в свете науки об управлении ряд существенно важных проблем.
Возникнув в результате развития и взаимного стимулирования ряда, в недалеком прошлом слабо связанных между собой, дисциплин технического, биологического и социального профиля кибернетика проникла во многие сферы жизни.
Столь необычная "биография" кибернетики объясняется целым рядом причин, среди которых надо выделить две.
Во-первых, кибернетика имеет необычайный, синтетический характер. В связи с этим до сих пор существуют различия в трактовке некоторых ее проблем и понятий.
Во-вторых, основополагающие идеи кибернетики пришли в нашу страну с Запада, где они с самого начала оказались под влиянием идеализма и метафизики, а иногда и идеологии. То же самое, или почти то же самое происходило и у нас. Таким образом становится очевидной необходимость разработки философских основ кибернетики, освещение ее основных положений с позиции философского познания.
Осмысление кибернетических понятий с позиции философии будет способствовать более успешному осуществлению теоретических и практических работ в этой области, создаст лучшие условия для эффективной работы и научного поиска в этой области познания.
Кибернетика как перспективная область научного познания привлекает к себе все большее внимание философов. Положения и выводы кибернетики включаются в их области знания, которые в значительной степени определяют развитие современной теории познания. Как справедливо отмечают исследователи, кибернетика, достижения которой имеет громадное значение для исследования познавательного процесса, по своей сущности и содержанию должна входить в теорию познания.
Исследование методологического и гносеологического аспектов кибернетики способствует решению многих философских проблем. В их числе - проблемы понимания простого и сложного, количества и качества, необходимости и случайности, возможности и действительности, прерывности и непрерывности, части и целого. Для развития самих математики и кибернетики важное значение имеет применение к материалу этих наук ряда фундаментальных философских принципов и понятий, применение, обязательно учитывающее специфику соответствующих областей научного знания. Среди этих принципов и понятий следует особо выделить положение отражения, принцип материального единства мира конкретного и абстрактного, количества и качества, нормального и содержательного подхода к познанию и др.
Философская мысль уже много сделала в анализе аспектов и теоретико-познавательной роли кибернетики. Было показано, сколь многообещающим в философском плане является рассмотрение в свете кибернетики таких вопросов и понятий, как природа информации, цель и целенаправленность, соотношение детерминизма и теологии, соотношение дискретного и непрерывного, детерминистского и вероятностного подхода к науке. Нужно сказать и о большом значении кибернетики для построения научной картины мира. Собственно предмет кибернетика - процессы, протекающие в системах управления, общие закономерности таких процессов.
Явления, которые отображаются в таких фундаментальных понятиях кибернетики, как информация и управление, имеют место в органической природе и общественной жизни. Таким образом, кибернетику можно определить как науку об управлении и связи с живой природой в обществе и технике.
Один из важнейших вопросов, вокруг которого идут философские дискуссии - это вопрос о том, что такое информация, какова ее природа? Для характеристики природы информационных процессов необходимо кратко рассмотреть естественную основу всякой информации, а таковой естественной основой информации является присущее материи объективное свойство отражения.
Положение о неразрывной связи информации и отражения стало одним из важнейших в изучении информации и информационных процессов и признается абсолютным большинством философов.
Информация в живой природе в отличие от неживой играет активную роль, так как участвует в управлении всеми жизненными процессами.
Теория отражения видит решение новых проблем науки и, в частности, такой кардинальной проблемы естествознания как переход от неорганической материи к органической. Проблема заключается в том, что существует материя, способная ощущать, и материя, созданная из тех же атомов и в тоже время не обладающая этой способностью. Вопрос, таким образом поставлен вполне конкретно и, тем самым, толкает проблему к решению. Кибернетика вплотную занялась исследованием механизмов саморегуляции и самоуправления. Вместе с тем, оставаясь методически ограниченными, эти достижения оставили открытыми ряд проблем к рассмотрению которых привела внутренняя ломка кибернетики.
Сознание является не столько продуктом развития природы, сколько продуктом общественной жизни человека, общественного труда предыдущих поколений людей. Оно является существенной частью деятельности человека, посредством которой создается человеческая природа и не может быть принята вне этой природы.
Если в машинах и вообще в неорганической природе отражение есть пассивный, мертвый физико-химический, механический акт без обобщения и проникновения в сущность обобщаемого явления, то отражение в форме сознания есть, "познание высокоорганизованной материей самой себя, проникновение в сущность, закон развития природы, предметов и явлений объективного мира".
В машине же отражение не осознанно, так как оно осуществляется без образования идеальных образов и понятий, а происходит в виде электрических импульсов, сигналов и т.п. Поскольку, в нашем понимании, машина не мыслит, это не есть та форма отражения, которая имеет место в процессе познания человеком окружающего мира. Закономерности процесса отражения в машине определяются, прежде всего, закономерностями отражения действительности в сознании человека, так как машину создает человек в целях более точного отражения действительности, и не машина сама по себе отражает действительность, а человек отражает ее с помощью машины. Поэтому отражение действительности машиной является составным элементом отражения действительности человеком. Появление кибернетических устройств приводит к возникновению не новой формы отражения, а нового звена, опосредующего отражение природы человеком.
Общность мышления со способностью отражения служит объективной основой моделирования процессов мышления. Мышление связано с созданием, передачей и преобразованием информации, а эти процессы могут происходить не только в мозгу, а и в других системах, например ЭВМ. Кибернетика, устанавливая родство между отражением, ощущением и даже мышлением, делает определенный шаг вперед в решении поставленной проблемы. Это родство между мышлением и другими свойствами материи вытекает из двух фундаментальных принципов: принципа материального единства мира и принципа развития. Однако нельзя ни абсолютизировать ни отрицать это родство. Мышление это человеческое качество и отличается от кибернетической обработки информации.
Несмотря на качественное различие машины и мозга в их функциях есть общие закономерности (в области связи, управления и контроля), которые и изучает кибернетика. Но эта аналогия между деятельностью автоматической и нервной системы, даже в плане переработки информации, относительно условна и ее нельзя абсолютизировать. И в этой связи следует отметить, что для некоторых исследований по кибернетике, особенно тех, которые выполнены в начальный период ее развития, были характерны механистические и метафизические тенденции. Имело место непринятие во внимание качественных различий между неживой материей и мыслящим мозгом, стиралась всякая грань между познающим субъектом и объектом материального мира. Коль скоро современные ЭВМ универсальны и способны выполнять целый ряд логических функций, то утверждалось, что нет никаких оснований не признавать эту деятельность интеллектуальной. Допускалось создание искусственного интеллекта или машины, которая будет "умнее" своего создателя. Были поставлены другие вопросы, связанные с возможностью такой машины. Сможет ли машина полностью, во всех отношениях заменить человека? Существуют ли вообще какие ли пределы развития кибернетических устройств? Конечно эти вопросы не утратили актуальность. Было бы преждевременно списывать их в архив нестрого поставленных вопросов, ибо через них проходит линия конфликта между различными философскими школами.
Иначе говоря, речь идет о сущности человеческого сознания и его отношения к функционированию кибернетических устройств.
В настоящее время происходит обсуждение вопроса о перспективах развития кибернетических машин и их взаимоотношений с человеческим разумом.
Чтобы создать машину, функционирующую как мозг, необходимо создать вещество, обладающее свойствами или подобное высокоорганизованной белковой материи, каковое образует мозг. Действительно, такая машина будет функционировать "как мозг", но именно функционировать, а не мыслить. Чтобы мыслить материя должна существовать не только в экономической, но и в социальной форме. А замена неорганического содержимого органическим этого не дает, более того, в результате подобной замены будет утрачено одно из основных преимуществ электронной машины быстродействие.
Рассматривая возможность создания искусственным путем, на основе моделирования, мыслящего существа необходимо остановиться на двух аспектах этой проблемы. Во-первых, кибернетика моделирует не все функции мозга, а только те, которые связаны с получением, обработкой и выдачей информации, т.е. функции, которые поддаются логической обработке. Все же другие, бесконечно разнообразные функции человеческого мозга остаются вне поля зрения кибернетики.
Во-вторых, с точки зрения теории моделирования вообще не имеет смысла говорить о полном тождестве модели и оригинала.
Отождествление человеческого и "машинного" разума происходит тогда, когда субъект мышления подменяется какой-либо материальной системой, способной отражать. Единственным же субъектом мышления является человек, вооруженный всеми средствами, которыми он располагает на данном уровне своего развития. В эти средства входят и кибернетические машины, в которых материализованы результаты человеческого труда. И, как всякое орудие производства, кибернетика продолжает и усиливает возможности человеческого мозга. Человек будет передавать машине лишь некоторые функции, выполняемые им в процессе мышления. Само мышление как духовное производство, создание научных понятий, теорий, идей, в которых отражаются закономерности объективного мира, останется за человеком.
До сих пор понимание мышления опиралось главным образом на обобщенные данные психологии, физиологии и языкознания. Данные кибернетики позволяют поставить вопрос о более конкретном понимании мышления.
Кибернетика не ставит целью "замену" человека или "подмену" его мышления. Оно лишь дает новые аргументы в пользу представления о машине, как помощнице человека.
Кибернетика подводит к выводу о том, что при решении вопроса о принципиальных и реальных вопросах машинного моделирования процессов мышления следует, прежде всего, учитывать социальную обусловленность мышления, сознания, психической жизни человека.
Моделирование как метод исследования характеризуется опосредованным практическим или теоретическим исследованием объекта. При этом изучается не объект а вспомогательная искусственная или естественная система, находящаяся в объективном соответствии с исследуемым объектом, способная замещать его в определенном отношении и дающая при ее исследовании информацию о самом моделируемом объекте.
С гносеологической точки зрения суть моделирования заключается в опосредованном познании интересующего нас объекта, т.е. по модели мы судим о некоторых свойствах оригинала. С помощью моделирования познаются новые явления на основе уже изученных. Кибернетический подход означает моделирование процессов интеллектуальной деятельности человека с одной определенной стороны, а именно - на уровне элементарных процессов переработки информации.
Природа мышления, загадка сознания, тайна разума, все это, безусловно, одна из наиболее волнующих человека проблем. Популярность кибернетики, неослабевающий интерес к ней со стороны самых широких кругов во многом объясняется именно ее тесной связью с этой "вечной" проблемой.
Американский психолог и философ У. Джемс в конце прошлого века пытался обосновать точку зрения, что есть мозг. Джемс не оспаривает ни одного утверждения физиологии, устанавливающему связь между процессами, которые мы субъективно осознаем как мышление, и материальными процессами, происходящими при этом в мозгу. Но (и в этом смысл аргументов Джемса) с логической точки зрения эта связь не означает то, что мозг есть орган мысли; любые данные физиологии доказывают лишь наличие соответствия и не более того.
Высшим судьей научных концепций всегда в конечном счете является практика. "Если мы можем доказать правильность нашего понимания данного явления природы тем, что сами его производим, вызываем его из его условий, заставляем его к тому же служить нашим целям, то кантовской неуловимой "вещи в себе" приходит конец". Этот аргумент искусственного воспроизведения отсутствовал в традиционной философии и кибернетика дает его независимо от исхода споров о возможности создания искусственного интеллекта, сравнимого с человеческим.
На основе уже достигнутого можно утверждать, что целый ряд функций мышления, ранее считавшихся исключительным достоянием живого мозга, искусственно воспроизводится кибернетическими устройствами. В этом заключается огромной важности философский результат кибернетики, констатировать который можно уже сегодня.
Мышление есть функция высокоорганизованной материальной системы - важнейшее философское завоевание кибернетики. Но кибернетика идет дальше и ставит вопрос, вместе с которым мы попадаем в пучину споров, вопрос о возможности "искусственного интеллекта", "машинного мышления", "кибернетического разума" и т.д. Здесь обнаруживается полный спектр взглядов, начиная от "крайне оптимистических" до "крайне пессимистических" на возможность возникновения мыслящих машин. Аргументация в пользу пессимистического взгляда обычно двоякая: либо авторы исходят из особой субстанционной природы мышления, либо из особой качественной его специфичности. Правда не совсем ясно, чем отличается первое от второго.
Представляется наиболее разумной позиция, которую можно назвать "умеренно оптимистической": на сегодня нет непреодолимых, принципиальных преград на пути создания искусственных устройств, обладающих интеллектом. Но на этом пути стоят огромные трудности, отнюдь не уменьшающиеся с бурным развитием кибернетики (например машинный перевод), хотя лет 20 назад большинство специалистов рисовали самые радужные перспективы на самое ближайшее будущее; но задача оказалась на много сложнее, чем это показалось вначале. Кроме того, нет оснований считать, что непреодолимые препятствия не появятся в будущем.
Имеющееся у нас знание включает в себя как совокупность научных теорий и эмпирических сведений, так и общефилософские принципы. Из имеющихся научных теорий и эмпирических данных "крайне пессимистический" вывод не следует. Аргументы против возможности искусственного интеллекта, основанные на имеющихся научных теориях и эмпирических данных, могут быть названы "конкретными" аргументами. Обычно они состоят в указании на какие-нибудь определенные действия мышления, которые неспособно выполнить никакое кибернетическое устройство. Однако все такие аргументы были опровергнуты в ходе развития кибернетики. Более того, существует теорема МакКаллока Питса, сводящая вопрос о выполнении любой функции головного мозга к вопросу о познаваемости этой функции. Не становясь на позиции агностицизма трудно быть приверженцем "конкретных" аргументов.
Идея искусственного интеллекта часто объявляется механистической на том основании, что работа ЭВМ управляется законами электродинамики, и, значит, здесь происходит сведение высшего (мышления) к низшему (физическим процессам в ЭВМ). Однако исходная посылка неверна.
Работа ЭВМ отнюдь не управляется законами электродинамики. Этими законами управляется работа отдельных элементов машины. По физическим законам ЭВМ работает только в том смысле, что она, скажем, преобразует электрическую энергию в тепло. Ведь сущность работы состоит не в этом преобразовании, а в том, что она производит определенные арифметико-логические операции. Машина имеет дело с информацией и работает по законам преобразования информации, т.е. по законам кибернетики. Поэтому, если рассматривать эти процессы с позиции механизма, неизбежно оказываешься на позициях механицизма, т.к. происходит сведение более сложных процессов переработки информации к более простым. Это то же самое, что сказать, будто работа мозга сводится к биохимическим и биофизическим процессам. На самом деле эти процессы происходят на уровне нервных клеток, а на уровне процессов переработки информации действуют другие законы, закономерности которых отнюдь не эквивалентны. С этой точки зрения и работу ЭВМ надо рассматривать как работу системы по переработки информации.
Не касаясь вопроса о структуре информации, представляющей собой меру упорядоченности процесса и составляющей его внутреннее достояние, мы охарактеризуем внешнюю или относительную информацию, всегда связанную с отношением двух процессов. Пусть имеются процессы А и В со множеством некоторым образом упорядоченных состояний А1...Аn и В1...Вn. Если каждому Аi соответствует определенное Вi и отношение между состояниями А изоморфны состояниям В, то можно сказать, что процесс В несет в себе информацию о процессе А. Эта информация заключается не в В ни в А, но существует именно в отношении этих процессов друг к другу. Взятая сама по себе эта информация столь же объективна и материальна, как и любые другие свойства и отношения объектов или процессов.
Теперь возьмем множество состояний нашего мозга в процессе функционирования. Мозг отражает внешний мир, что значит, что между множеством состояний элементов мозга и множеством состояний внешних процессов имеется соответствие, т.е. мозг имеет информацию о внешних процессах. Эта информация заключена и не заключена в мозгу, т.к. сколько бы мы ни исследовали мозг кроме электрических, химических и др. характеристик нейронов мы там ничего не обнаружим. Необходимо рассмотреть связь мозга с внешним миром. Именно в этом и заключена информация, носителем которой и являются нейроны. Информация, с которой работает мозг и есть та идеальная сторона в его работе, и таким образом идеальное не существует в виде особого предмета или субстанции. Оно существует как сторона деятельности мозга, заключающейся в установлении связей между множеством состояний внешнего мира и головного мозга. Идеальная информация человеческого мозга имеет в принципе тот же характер, что и относительная информация вообще.
На известной ступени исторического развития материи произошел качественный скачок, в результате которого информация, превратившись в достояние мозга, приобрела характер идеальной информации. Если мы признаем у кибернетических систем возможность достижения сложности, сравнимой со сложностью мозга, то необходимо признать у таких систем существование у них черт, которые мы называем идеальными.
Ряд авторов объявляет тезис искусственного интеллекта противоречащим тезису о социальной природе сознания и мышления. Но здесь скрывается ошибка - отсутствие различия между естественно историческим зарождением мышления и сознательным воспроизведением его человеком в универсальной ЭВМ. Во втором случае машина не становится социальным существом, но человек, поняв сущность мышления, воссоздает его в машине. Если социальная природа мышления закономерна и познаваема, то она может быть в принципе искусственно воспроизведена.
Человек, кроме того есть не только природное существо, его основные характеристики - продукт социального, а не чисто биологического развития. Это означает, что мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество.
Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения "разумность" машины определяется количеством перерабатываемой информации, поэтому даже мощная система, попавшая в информационно-бедную среду, не может стать достаточно "разумной". Яркий пример - дети, выросшие вне общества, например в лесу. Для человека необходимым условием его развития было функционирование в обществе, т.к. общество по своим информационным параметрам является чрезвычайно богатой средой.
Все это дает возможность понять, что тезис об общественной природе мышления никак не противоречит тезису о искусственном интеллекте. Кибернетическая система, имеющая достаточную мощность, для полного использования своих возможностей должна быть помещена в информационно-богатую среду, образовав вместе с создателями некий симбиоз, называемый "интегральным интеллектом".
Принцип невозможности кибернетического интеллекта жестко привязывает определенный род функционирования к строго определенному субстрату (мозгу). Это ставит философскую проблему соотношения функции и субстрата. Философский анализ тенденций современного научного знания делает мало вероятным (но не исключает) вывод о жесткой привязанности мышления к мозгу. Именно из-за этого "крайний пессимист" отрицает возможность наличия интеллекта у кибернетического устройства.
Он безоговорочно связывает мышление с одним, строго определенным субстратом - человеческим мозгом, и не приемлет попытки определения мышления без связи со структурой мыслящей системы. По его мнению это есть сведение мышления только к информационной стороне, в то время как мышлением называют возникшую у биологических существ способность. Таким образом, мышлением можно назвать только то, то осуществляется только мозгом человека, но это не является приемлемым решение проблемы.
Разумеется, мышление есть функция высокоорганизованной материи и определено структурой системы. Но с гносеологической точки зрения знание функции выводится из знания структуры, а знание структуры является выводом из все более полного изучения способов функционирования.
Если представить себе множество различных систем, осуществляющих функцию мышления, то именно выявление инвариантного аспекта этих систем и будет раскрытием той структуры, которая лежит в процессе мышления. Конечно может оказаться, что эта структура жестко связана со строго определенным субстратом, но этот тезис должен являться результатом научного исследования, а не исходной предпосылкой.
Вопрос о жесткой связи мышления со строго определенным субстратом связан с вопросом о роли субстратных методов вообще. Не подлежит сомнению ведущая роль в современном естествознании функционально-структурных методов. Пока наука имела дело с непосредственно ощущаемыми объектами, она могла исходить из субстратной точки зрения. Суть ее заключается в том, что объект обладает набором характеристик, выражающим его природу, свойства того материала, из которого он сделан. Зная эти характеристики можно изучить поведение объекта. Материал, субстрат первичен; движение, поведение вторично. Эта точка зрения образует содержание так называемого мифического субстанционализма.
Уже в 19 веке ограниченность этой концепции была вскрыта "лишь в движении тело обнаруживает, что оно есть... Познание различных форм движения и есть познание тел". Отсюда, разумеется, не следует, что только движение существует и никакого субстрата нет вообще. Отсюда следует лишь неправомерность употребления отношения первичности-вторичности для характеристики связи движения (поведения) и субстрата в плане их реального существования.
Отсюда следует также, что в гносеологическом плане поведение действительно первично по отношению к субстрату и познание субстрата не содержит ничего иного, кроме непрерывно расширяющихся способов изучения объектов.
В наши дни, идущие под знаком ускорения научно-технического прогресса, автоматизация интеллектуальной деятельности становится насущной проблемой.
Согласно положению специалиста по кибернетике И. А. Полетаева мы вступаем в эпоху "пересечения кривых". Экстраполируя на обозримое будущее современные тенденции развития общества можно придти к парадоксальным результатам. Сейчас число лиц, занятых в сфере управления и обслуживания растет быстрее, чем число лиц, непосредственно занятых в производстве. Причем происходит это так быстро, что через некоторое время количество людей, занятых в непроизводственной сфере и, в частности, в науке будет близко к общей численности населения Земли.
Стремительное увеличение потока перерабатываемой информации там, где раньше ее почти не было(торговля, банковское дело), также приведет к значительным изменениям в методах работы и требует автоматизации и интеллектуализации.
Под интеллектом мы понимаем способность любого организма (или устройства) достигать некоторой измеримой степени успеха при поиске одной из многих возможных целей в обширном многообразии сред. Необходимо отличать знания от интеллекта, имея в виду, что знания - полезная информация, накопленная индивидуумом, а интеллект - это его способность предсказываль состояние внешней среды в сочетании с умением преобразовывать каждое предсказание в подходящую реакцию, ведущую к заданной цели. По-разному дается и определение искусственного интеллекта. Полагают, что о реализации искусственного интеллекта можно будет говорить лишь тогда, когда автомат начнет решать задачи, непосильные для человека, причем сделает это не в результате высокого быстродействия, а в результате применения нового найденного метода. Однако не все с этим согласны. В большинстве случаев исследований по искусственному интеллекту лишь соизмеримыми с результатами, полученными человеком, и не столь оригинальными.
Принято различать три основные пути моделирования интеллекта и мышления:
- классический, или (как его теперь называют) бионический;
- эвристического программирования;
- эволюционного моделирования.
Рассмотрим их в этой последовательности.
БИОНИЧЕСКОЕ МОДЕЛИРОВАНИЕ. Непосредственное моделирование человеческого мозга (т.е. моделирование каждой нервной клетки и связей между ними) с целью создания автоматов, обладающих интеллектом, чрезвычайно сложно. Мозг представляет собой самую сложную и лишь частично изученную структуру. Сложнейшее переплетение связей коры головного мозга практически не поддаются расшифровке. Известно лишь примерное расположение зон мозга, отвечающих за ту или иную функцию. В настоящее время не известен и принцип работы мозговых элементов нейронов, многочисленные связи которых имеют внешне хаотический характер. Попытки смоделировать работу головного мозга соединением между собой множества процессоров подобно нейронной сети, показали, что некоторое увеличение скорости и потока обрабатываемой информации идет лишь до уровня одного - двух десятков процессоров, а затем начинается резкий спад производительности. Процессоры как бы "теряются", перестают контролировать ситуацию или проводят большую часть времени в ожидании соседа. Некоторых успехов удалось добиться лишь в приборах, работающих в "двумерном варианте", т.е. обрабатывающих не последовательную, а параллельную информацию, например в системах распознаваниях образов. В них одна плоскость данных одновременно взаимодействует с другой, причем количество единиц информации может достигать нескольких миллионов. Таким образом происходит единовременный охват изучаемого объекта, а не последовательное изучение его частей.
ЭВРИСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ. Второй подход к решению задачи искусственного интеллекта связан с эвристическим программированием и решает задачи, которые в общем можно назвать творческими.
Практичность этого метода заключается в радикальном уменьшении вариантов, необходимых при использовании метода проб и ошибок. Правда, всегда существует вероятность упустить наилучшее решение, так что говорят, что этот метод предлагает решения с некоторой вероятностью правильности.
Обычно используют два метода: метод анализа целей и средств и метод планирования. Первый заключается в выборе и осуществлении таких операций, которые последовательно уменьшают разницу между исходным и конечным состоянием задачи. Во втором методе вырабатывается упрощенная формулировка исходной задачи, которая также решается методом анализа целей и средств. Один из полученных вариантов дает решение исходной задачи.
ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ. Третий подход является попыткой смоделировать не то, что есть, а то, что могло бы быть, если бы эволюционный процесс направлялся в нужном направлении и оценивался предложенными критериями.
Идея эволюционного моделирования сводится к экспериментальной попытке заменить процесс моделирования человеческого интеллекта моделированием процесса его эволюции. При моделировании эволюции предполагается, что разумное поведение предусматривает сочетание способности предсказывать состояние внешней среды с умением подобрать реакцию на каждое предсказание, которое наиболее эффективно ведет к цели.
Этот метод открывает путь к автоматизации интеллекта и освобождению от рутинной работы. Это высвобождает время для проблемы выбора целей и выявления параметров среды, которые заслуживают исследования. Такой принцип может быть применен для использования в диагностике, управлении неизвестными объектами, в игровых ситуациях.
Итак, существуют три пути моделирования интеллекта: бионический, эвристический и эволюционный. В зависимости от использованных средств можно выделить три фазы в исследованиях. Первая фаза - создания устройств, выполняющих большое число логических операций с высоким быстродействием.
Вторая фаза включает разработку проблемно-ориентированных языков для использованного на оборудовании, созданном в первой фазе. Третья фаза наиболее выражена в эволюционном моделировании. В ходе развития этой фазы отпадает необходимость в точной формулировке постановки задачи, т.е. задачу можно сформулировать в терминах цели и допустимых затрат, а метод решения будет найден самостоятельно по этим двум параметрам.
Работы по искусственному интеллекту во многом тесно связаны с философской проблемой кибернетического моделирования. Эти работы часто связывают с построением точной копии человеческого мозга. Однако такой подход можно назвать "некибернетическим". Каковы же черты кибернетического метода мышления, какие вопросы вносит кибернетика в человеческое познание? В своей "Истории западной философии" Б. Рассел ставит вопрос о факторах, позволивших европейцам создать тип культуры, в котором ведущее место заняла наука. Причину этого Рассел усматривает, как он выражается, в двух великих интеллектуальных изобретениях: изобретение дедуктивного метода древними греками (Эвклид) и изобретение экспериментального метода в эпоху возрождения (Галилей). Именно эти два интеллектуальных изобретения - дедуктивный метод (а тем самым математика) и эксперимент - позволили создать классическую науку. К этим двум основным интеллектуальным орудиям современное развитие познания добавляет третье - математическую модель и математическое моделирование. Соединение дедуктивных построений математики с данными, добытыми экспериментальным методом, создает естествознание, в центре которого стоит понятие научного закона. Совокупность законов - это основное содержание естествознания; их установление его основная задача.
Закон претендует на точное (в рамках данного уровня познания) описания хода явлений. Закон либо верен, либо неверен, бессмысленно говорить о хороших и плохих законах. Модель в этом отношении противоположна закону. Модель может быть плохой или хорошей, она не претендует на точное воспроизведение сложной системы, а ограничивается описанием отдельных аспектов, причем для одного и того же аспекта могут быть предложены модели, одновременно имеющие право на существование.
В изучении сложных систем (в т.ч. диффузных - нельзя выделить отдельные части без повреждения системы) формулировка относительно простых законов оказывается невозможной и заменяется построением эскизных моделей. Образно говоря, здесь мы имеем дело с математическим описанием, напоминающим современную абстрактную живопись. Можно сказать, что попытки реалистичного описания сложных систем иллюзорны такое описание не воспринималось бы из-за чрезмерной сложности.
Это не означает, что категория закона утрачивает смысл в науке, но то, что дополнительно к ранее известным интеллектуальным орудиям - строгой дедукции и эксперименту рождается третье орудие - математическое моделирование, в котором по-новому выступает математика и появляется новый вид эксперимента - машинный эксперимент, в котором проигрываются различные модели с последующим сопоставлением с реальным экспериментом.
Путь, который предлагает кибернетика, состоит в построении эскизных моделей, охватывающих все более и более широкий диапазон функций мышления. Задачи раскрыть "в лоб" "сущность мышления" не ставится, а ставится задача построения эскизных моделей, позволяющих описать отдельные его стороны, воспроизведены отдельные его функции и, двигаясь в этом направлении, строить системы, все более приближающиеся к человеческому мозгу.
Отсутствия жесткой связи способа функционирования (поведения) со строго определенным субстратом означает, что если две системы обнаруживают одинаковое поведение в достаточно широкой области, то они должны рассматриваться как системы сходные, аналогичные по этому способу поведения. Имеет смысл рассмотреть этот вопрос в связи с проблемой кибернетического моделирования.
Иногда встречается утверждение, что кибернетическое моделирование вообще неприменимо к изучению мышления, т.к. моделирование основана на понятиях соответствия и изоморфизма, а мышление есть чисто человеческая способность, якобы не могущая быть описана на основе понятий соответствия. Иногда говорят, что понимание познания, мышления как соответствия образа предмету означает ни много ни мало как дуалистическую точку зрения, внешне сопоставляющую предмет и образ.
Понимание сознания как отражения неизбежно означает понимание его как соответствия, возникающего в ходе приспособления организма к среде. Причем это соответствие не есть просто внешнее соответствие вещи и образа как самостоятельного по отношению к вещи идеального предмета. Это действительно была бы дуалистическая точка зрения, но она не может монополизировать понятие соответствия, именно как соответствие определенных состояний мозга определенным состояниям внешнего мира. Это соответствие и несет информацию о внешнем мире.
В приведенном утверждении не проводится различие между информационным моделированием информационных процессов и информационным моделированием неинформационных процессов. Информационная модель прибора не будет работать, а будет только моделировать работу, однако в отношение мышления этот тезис представляется спорным. По отношении к информационным процессам их моделирование является функционально полным, т.е. если модель дает те же самые результаты, что и реальный объект, то их различие теряет смысл.
Многие споры вокруг проблемы "кибернетика и мышление" имеют эмоциональную подоплеку. Признание возможности искусственного разума представляется чем-то унижающим человеческое достоинство. Однако нельзя смешивать вопросы возможности искусственного разума с вопросом о развитии и совершенствовании человеческого разума. Разумеется, искусственный разум может быть использован в негодных целях, однако это проблема не научная, а скорее морально-этическая.
Однако развитие кибернетики выдвигает ряд проблем, которые все же требуют пристального внимания. Эти проблемы связаны с опасностями, возникающими в ходе работ по искусственному интеллекту.
Первая проблема связана с возможной потерей стимулов к творческому труду в результате массовой компьютеризации или использования машин в сфере искусств. Однако в последнее время стало ясно, что человек добровольно не отдаст самый квалифицированный творческий труд, т.к. он для самого человека является привлекательным.
Вторая проблема носит более серьезный характер и на нее неоднократно указывали такие специалисты, как Н. Винер, Н. М. Амосов, И. А. Полетаев и др. Состоит она в следующем.
Уже сейчас существуют машины и программы, способные в процессе работы самообучаться, т.е. повышать эффективность приспособления к внешним факторам. В будущем, возможно, появятся машины, обладающие таким уровнем приспособляемости и надежности, что необходимость человеку вмешиваться в процесс отпадет. В этом случае возможна потеря самим человеком своих качеств, ответственных за поиск решений. Налицо возможная деградация способностей человека к реакции на изменение внешних условий и, возможно, неспособность принятия управления на себя в случае аварийной ситуации. Встает вопрос о целесообразности введения некоторого предельного уровня в автоматизации процессов, связанных с тяжелыми аварийными ситуациями. В этом случае у человека, "надзирающим" за управляющей машиной, всегда хватит умения и реакции таким образом воздействовать на ситуацию, чтобы погасить разгорающуюся аварийную ситуацию. Таковые ситуации возможны на транспорте, в ядерной энергетике. Особо стоит отметить такую опасность в ракетных войсках стратегического назначения, где последствия ошибки могут иметь фатальный характер. Несколько лет назад в США начали внедрять полностью компьютеризированную систему запуска ракет по командам суперкомпьютера, обрабатывающего огромные массивы данных, собранных со всего света. Однако оказалось, что даже при условии многократного дублирования и перепроверки, вероятность ошибки оказалась бы столь велика, что отсутствие контролирующего оператора привело бы к непоправимой ошибке. От системы отказались.
Люди будут постоянно решать проблему искусственного интеллекта, постоянно сталкиваясь со все новыми проблемами. И, видимо, процесс этот бесконечен.

ЛИТЕРАТУРА.
1. Философия. Учебное пособие для аспирантов / Р. В. Жердев, Т. А. Евсеева. Санкт-Петербург: НЕСТОР, 1997.
2. Баженов Л. Б., Гутчин И. Б., Интеллект и машина, М.: Знание, 1973.
3. Бердяев Н. А. Человек и машина, Вопросы философии, 1995, N2.
4. Вычислительные машины и мышление. М.: Мир, 1996.
5. Кибернетика и философия. АН Латвийской ССР, изд. "Зинатне", 1989.
6. Клаус Г. Кибернетика и философия, М.: "Иностранная литература", 1983.
7. Моисеев Н. Н. Компьютеризация, ее социальные последствия, Вопросы философии, 1987, N9.
8. Шалютин С. Искусственный интеллект. М., 1993.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЛИНГВОГУМАНИТАРНЫЙ КОЛЛЕДЖ УЧРЕЖДЕНИЯ ОБРАЗОВАНИЯ

«МИНСКИЙ ГОСУДАРСТВЕННЫЙ ЛИНГВИСТИЧЕСКИЙ УНИВЕРСИТЕТ»

по дисциплине «Основы современного естествознания»

Тема: Философские проблемы искусственного интеллекта

ВВЕДЕНИЕ

Возникновение и интенсивное развитие электронно-вычислительной техники при постоянно расширяющейся сфере ее использования, взаимосвязанное с изменениями в жизненно важных сферах общества, включая экономику, социальную структуру, политику, науку, культуру и повседневную жизнь людей, является объектом изучения различных гуманитарных дисциплин, в том числе и философии.

Первые систематические попытки выявления и изучения философских проблем, связанных с компьютерной техникой и открываемыми ею возможностями, были предприняты в рамках того, что может быть названо кибернетическим движением в широком смысле.

Появление компьютерных систем, которые стали называть интеллектуальными системами, и развитие такого направления, как искусственный интеллект, побудило по-новому взглянуть на ряд традиционных теоретико-познавательных проблем, наметить новые пути их исследования, обратить внимание на многие, оставшиеся ранее в тени аспекты познавательной деятельности, механизмов и результатов познания.

Искусственный интеллект является сейчас одной из быстро развивающихся областей научных исследований. Именно данная область научного знания охватывает многие коренные вопросы, которые связаны с методами развития научной мысли, с влиянием достижений и последствий усовершенствования вычислительной техники на жизнь будущих поколений людей.

Современные философы и исследователи науки часто рассматривают искусственный интеллект и искусственную жизнь как прекрасный пример для междисциплинарной интеграции многих научных областей. Химики, биологи, кибернетики, лингвисты, психологи, философы, математики, инженеры и другие изучают различные аспекты взаимодействия живых систем и искусственного интеллекта. При этом формируется новый взгляд на роль тех или иных научных результатов и возникает то, что может быть названо философским осмыслением полученных результатов.

Ученые университетских и промышленных исследовательских лабораторий стремятся к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума. Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта, постоянно вступают в схватку с весьма запутанными проблемами, далеко выходящими за пределы традиционной информатики.

Для создания машин, имитирующих работу человеческого мозга, необходимо разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. По современным научным данным, человеческий мозг содержит около 2 основных вычислительных узлов нейронов, которые соединяют около 2 связей синапсов. На сегодняшний день современные вычислительные системы стремительно приближаются по своим вычислительным возможностям к мозгу. Музыкальные компьютеры могут за короткое время давать новые музыкальные инструментовки для композиций в любых вариациях. Роботы, руководимые компьютерами, могут, в определенной степени, узнавать речь, корректировать свои движения и выполнять сложные работы. Искусственные нейронные сети контролируют сложнейшие системы управления и слежения, проявляют способности в области распознавания изображения, вплоть до возможности создания интеллектуальных автопилотов.

Программы порой столь совершенны, что в решении поставленных задач средний человек не может с ними соревноваться. Например, есть программы, ищущие и доказывающие новые теоремы математической логики, а современные шахматные программы может не обыграть даже хороший гроссмейстер. Искусственный интеллект и робототехника базируются на компьютерах и развиваются почти так же стремительно, как и компьютеры, ибо зависят от быстродействия и памяти последних.

В таких условиях приобретает особую значимость рассмотрение основных философских вопросов, связанных с искусственным интеллектом. В качестве решения философской проблемы компьютерного моделирования мышления в реферате рассмотрены вопросы мышления и самосознания. При этом необходимо не только конкретизировать понятие об искусственном интеллекте, историю его развития, но и изучить философские основы кибернетики как науки и проблемные вопросы, которые связаны с компьютеризацией общества.

1. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ КАК ПУТЬ РАЗВИТИЯ НАУЧНОЙ МЫСЛИ

1.1 Конкретизация понятия «искусственный интеллект»

Интеллект (от лат. intellectus - ум, рассудок) - общий умственній потенциал человека, степень реализации способностей, которые он целесообразно использует для приспособления к жизни 1, с.259.

Интеллект выражает все умственные функции человека, всю совокупность его познавательных умений; ощущения, восприятие, память, представление, мышление, воображение.

В понятие «искусственный интеллект» вкладывается различный смысл - от признания интеллекта у ЭВМ, решающих логические или даже любые вычислительные задачи, до включения в интеллектуальные лишь те системы, которые решают весь комплекс задач, осуществляемых человеком, или еще более широкую их совокупность.

Искусственный интеллект может рассматриваться как:

· умение решать сложные задачи;

· способность к обучению, обобщению и аналогиям;

· возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого.

По мнению Цеханова 2, искусственный интеллект - это наука, занимающаяся исследованием и построением интеллектуальных систем, то есть таких систем, которые способны осуществлять интеллектуальные действия, присущие человеческому мышлению.

Как отмечалось, в исследованиях по искусственному интеллекту ученые отвлекаются от сходства процессов, происходящих в технической системе или в реализуемых ею программах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусственного интеллекта.

Однако это ограничение недостаточно. Создание традиционных программ для ЭВМ - работа программиста, в то же время не есть конструирование искусственного интеллекта. Какие же задачи, решаемые техническими системами, можно рассматривать как конституирующие искусственный интеллект?

Чтобы ответить на этот вопрос, надо выяснить задачи технических систем. Однако данный термин тоже не является достаточно определенным. В психологии можно квалифицировать данные задачи как мыслительные задачи. Они подчеркивают, что задача есть только тогда, когда есть работа для мышления, то есть, когда существует определенная цель, а средства к ее достижению не ясны, их надо найти посредством мышления.

Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интеллектуальная часть выполнена человеком. На долю машины тогда остаётся часть работы, которая не требует участия мышления.

Задачи, решаемые искусственным интеллектом, целесообразно определить таким образом, чтобы человек, по крайней мере, в определении отсутствовал. При характеристике мышления мы отмечали, что его основная функция заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях.

Искусственный интеллект обладает следующими особенностями:

1) наличие у них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе;

2) способность пополнения имеющихся знаний;

3) способность к дедуктивному выводу, к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью;

4) умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая «понимание» естественного языка;

5) способность к диалоговому взаимодействию с человеком;

6) способность к адаптации.

На вопрос, все ли перечисленные условия обязательны, необходимы для признания системы интеллектуальной, ученые отвечают по-разному. В реальных исследованиях, как правило, признается абсолютно необходимым наличие внутренней модели внешнего мира, и при этом считается достаточным выполнение хотя бы одного из перечисленных выше условий.

На начальных этапах разработки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу создания интеллекта, успешно функционирующего в любой сфере деятельности. Это можно назвать разработкой «общего интеллекта». Сейчас большинство работ направлено на создание «профессионального искусственного интеллекта», то есть систем, решающих интеллектуальные задачи из относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии).

Исходным пунктом рассуждений об искусственном интеллекте является определение такой системы как решающей мыслительные задачи. Но перед нею ставятся и задачи, которые люди обычно не считают интеллектуальными, поскольку при их решении человек сознательно не прибегает к перестройке проблемных ситуаций. К их числу относится, например, задача распознания зрительных образов. Человек узнает человека, которого видел один или два раза, непосредственно в процессе чувственного восприятия. Исходя из этого, кажется, что эта задача не является интеллектуальной. Но в процессе узнавания человек не решает мыслительных задач лишь постольку, поскольку программа распознания не находится в сфере осознанного. Но так как в решении таких задач на неосознанном уровне участвует модель среды, хранящаяся в памяти, то эти задачи, в сущности, являются интеллектуальными. Соответственно и система, которая ее решает, может считаться интеллектуальной.

Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами. Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами.

1.2 История развития искусственного интеллекта

Искусственный интеллект, как одно из новых научных направлений, появился во второй половине ХХ века на базе вычислительной техники, математической логики, программирования, психологии, лингвистики, нейрофизиологии и других отраслей знаний. Таким образом, искусственный интеллект объединяет профессиональные интересы специалистов разного профиля.

Возникновения искусственного интеллекта проявляется в следующих подходах: механический, электронный, кибернетический и нейробионический.

Механический подход. Идея создания мыслящих машин «человеческого типа», которые, казалось бы, думают, двигаются, слышат, говорят и ведут себя как живые люди уходит корнями в глубокое прошлое. Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, которые жестикулировали и изрекали пророчества (разумеется, не без помощи жрецов).

Средневековые летописи полны рассказов об автоматах, способных ходить и двигаться почти также как их хозяева люди. В средние века и даже позднее ходили слухи о том, что у некоторых из мудрецов есть гомункулы (маленькие искусственные человечки) настоящие живые, способные чувствовать существа.

В XVIII веке благодаря развитию техники, особенно разработке часовых механизмов, интерес к подобным изобретениям возрос. В 1736 г. французский изобретатель Жак де Вокансон изготовил механического флейтиста в человеческий рост, который исполнял двенадцать мелодий, перебирая пальцами отверстия и дуя в мундштук, как настоящий музыкант. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор, сконструировал серию машин, которые умели держать перо и могли писать довольно длинные тексты.

Успехи механики XIX в. стимулировали еще более честолюбивые замыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж задумал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал «аналитической машиной» 3,с.72-73.

Электронный подход. После Второй мировой войны появились устройства, казалось бы, подходящие для достижения заветной цели моделирования разумного поведения; это были электронные цифровые вычислительные машины.

«Электронный мозг», как тогда восторженно называли компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты президентских выборов за несколько часов до получения окончательных данных. Этот «подвиг» компьютера лишь подтвердил вывод, что наступит тот день, когда автоматические вычислители, столь быстро, неутомимо и безошибочно выполняющие автоматические действия, смогут имитировать невычислительные процессы, свойственные человеческому мышлению, в том числе восприятие и обучение, распознавание образов, понимание повседневной речи и письма, принятие решений в неопределенных ситуациях. Многие изобретатели компьютеров и первые программисты развлекались, составляя программы для отнюдь не технических занятий, как сочинение музыки, решение головоломок и игры, на первом месте здесь оказались шашки и шахматы. Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.

К концу 50х годов все эти увлечения выделились в новую более или менее самостоятельную ветвь информатики, получившую название «искусственный интеллект». Одним из основателей теории искусственного интеллекта считается известный английский ученый Алан Тьюринг, который в 1950-м году опубликовал небольшую статью «Может ли машина мыслить?». Статья посвящена обсуждению вопроса о способности компьютеров к мышлению. Для научного исследования этой проблемы предлагался так называемый «тест Тьюринга», позволяющий оценить «интеллектуальность» компьютера по его способности к осмысленному диалогу с человеком. «Тест Тьюринга» и предложенный в нем подход к моделированию мышления положил начало исследованиям в этой области и до сих пор остается предметом острых научных дискуссий. И, тем не менее, хотя с момента его появления прошло уже более полувека, до сих пор так и не было предложено любых других конструктивных альтернатив «тесту Тьюринга» 4, с.225-238.

Первые практические разработки, которые можно отнести к искусственному интеллекту появились почти сразу же после появления первых вычислительных машин. В 1954 году американский исследователь А. Ньюэлл написал первую программу для игры в шахматы. В этом же 1956 году была написана и первая программа «Логик-Теоретик», предназначенная для автоматического доказательства теорем в исчислении высказываний. Эту программу можно отнести к первым достижениям в области искусственного интеллекта. Важное значение в становлении искусственного интеллекта имела проведенная в 1956 году конференция в Дартмуте (США). Именно на этой конференций впервые появился и сам термин - «искусственный интеллект». В 1960 году этой же группой ученых на основе принципов, использованных в NSS, была написана программа GPS (General Problem Solver), которая могла решать ряд головоломок, вычислять неопределенные интегралы, решать некоторые другие задачи. Появились программы автоматического доказательства теорем из планиметрии и решения алгебраических задач.

К этому времени в СССР, США, Великобритании и других странах, в которых активно внедрялась вычислительная техника, было накоплено множество самых разнообразных программ для решения нечисловых задач. Среди них было немало таких, которые демонстрировали возможность имитации на компьютере отдельных творческих процессов, присущих человеку. В конце 1960-х годов появились первые игровые программы, системы для элементарного анализа текста и решения некоторых математических задач (геометрии, интегрального исчисления).

1960-е годы впоследствии были названы годами технократического романтизма. Это был период кибернетического бума, когда у многих ученых было такое ощущение, что проблема человеческого мышления и искусственного интеллекта теоретически уже почти решена 5, с.130-142.

В целом, в течение 1970-х годов сложились основные теоретические направления исследований в области интеллектуальных систем. Теория искусственного интеллекта окончательно была признана самостоятельной отраслью науки.

Вскоре после этого сформировались и два основных направления в создании моделей интеллектуальной деятельности: информационное направление (кибернетика) и нейробионическое (нейрокибернетика) и Долгое время эти направления развивались самостоятельно, и только к концу 1990-х годов стали заметны тенденции к объединению этих частей вновь в единое целое.

Сторонники информационного направления исходили из того, что искусственный интеллект в принципе не может быть копией человеческого интеллекта, поскольку мозг человека работает гораздо лучше и быстрее любой интеллектуальной системы. Поэтому системы искусственного интеллекта должны не копировать полностью человеческий интеллект, а стремиться к достижению тех же результатов другими средствами. Кратко остановимся на каждом из этих направлений.

Основную идею нейрокибернетики можно сформулировать следующим образом: единственный объект, способный мыслить, - это человеческий мозг, поэтому любое «мыслящее» устройство должно каким-то образом воспроизводить его структуру 6, с.42-57.

С 2000 года развитие субмикронных и нанотехнологий, а также успехи молекулярной и биомолекулярной технологии привели к принципиально новым архитектурным и технологическим решениям по созданию нейрокомпьютеров. Из кибернетического, или информационного, подхода к машинному разуму скоро сформировался так называемый «восходящий метод» движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше.

философский мышление искусственный интеллект

1.3 Искусственный интеллект как компьютерное моделирование мышления

В русле кибернетического движения осуществлялись философские и логико-методологические исследования управления, информации, мышления, познания, структуры научного знания и перспектив его развития. Характерные для кибернетического движения идея общности (одинаковости или сходства) закономерностей, определяющих процессы управления и переработки информации в самых разных сферах реальности, а также идея плодотворности использования математических и логико-математических трактовок этих процессов на различных уровнях абстракции получали специфическое преломление в многочисленных сравнениях человеческого мышления и работы ЭВМ. В ходе бурных дебатов 60-70-х годов на тему «Может ли машина мыслить?» были, по существу, представлены различные варианты ответа на вопрос о том, что может быть субъектом познания: только ли человек (и, в ограниченном смысле, животные) или же и машина может считаться субъектом мыслящим, обладающим интеллектом и, следовательно; познающим. Сторонники последнего варианта пытались сформулировать такое определение мышления, которое позволяло бы говорить о наличии мышления у машины, - например, мышление определялось как решение задач. Нужно отметить, однако, что и способность компьютерной системы к принятию каких-либо решений также может быть поставлена под сомнение.

Оппоненты сторонников «компьютерного мышления» напротив, стремились выявить такие характеристики мыслительной деятельности человека, которые никак не могут быть приписаны компьютеру, и отсутствие которых не позволяет говорить о мышления в полном смысле этого слова. К числу таких характеристик относили, например, способность к творчеству и эмоциональность.

Компьютерное моделирование мышления дало мощный толчок психологическим исследованиям механизмов познавательной деятельности. Это проявлялось, с одной стороны, в проникновении в психологию «компьютерной метафоры», ориентирующей на изучение познавательной деятельности человека по аналогии с переработкой информации на компьютере, и; с другой стороны, в активизации исследований, стремящихся показать плодотворность и самостоятельную ценность иных подходов - например, изучение мышления в контексте общей теории деятельности. Тихомиров, специально исследуя «соотношение кибернетического и психологического подходов к изучению мышления», настаивал, что «широко распространенное сближение человеческого мышления и работы вычислительной машины не обосновано» 11, с.15-22. Вместе с тем, он отмечает, что «именно развитие кибернетики сделало очевидным неполноту господствовавших в психология теорий мышления и поведения, выдвинув для изучения новые аспекты».

Характеризуя значение аналогий между человеческим мышлением и компьютерной переработкой информации, английская исследовательница М. Боден пишет: «В той степени, в какой аналогия с компьютером может служить общим человеческим интересам более глубокого познания разума, осторожное использование “психологической” терминологии в отношении определенного типа машин должно скорее поощряться, чем запрещаться... Аналогии дают возможность не только обозначить сходные черты между сравниваемыми объектами, но ведут к обнаружению действительно важных сходств и различий» 12, с.41-45.

Компьютерное моделирование мышления, использование методов математических и технических наук в его исследовании породило в период «кибернетического бума» надежды на создание в скором будущем строгих теорий мышления, столь полно описывающих данный предмет, что это сделает излишними всякие философские спекуляции по его поводу. Надеждам такого рада, однако же, не суждено было сбыться, и сегодня мышление, будучи предметом изучения частных наук (психологии, логики, искусственного интеллекта, когнитивной лингвистики), остается также притягательным объектом философских рассмотрений.

Развитие информационной техники позволило компенсировать человеку психофизиологическую ограниченность своего организма в ряде направлений. «Внешняя нервная система», создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые.

Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и тем самым в развитие свободы человека. Человек поставил задачу создать некий аналог себя самого. И он смог это сделать. Механическая часть подобно человеческому телу и управление ею уже имеются - это роботы, функционирующие на сервомеханизмах. Отчасти смоделированы интеллектуальные функции человека и цивилизация идет дальше.

Многие споры вокруг проблемы создания искусственного интеллекта имеют эмоциональную подоплеку. Признание возможности искусственного разума представляется чем-то унижающим человеческое достоинство. Однако нельзя смешивать вопросы возможностей искусственного разума с вопросом о развитии и совершенствовании человеческого разума. Повсеместное использование искусственного интеллекта создаёт предпосылки для перехода на качественно новую ступень прогресса, даёт толчок новому витку автоматизации производства, а значит и повышению производительности труда. Разумеется, искусственный разум может быть использован в негодных целях, однако это проблема не научная, а скорее морально-этическая.

Однако развитие кибернетики выдвигает ряд проблем, которые все же требуют пристального внимания. Эти проблемы связаны с опасностями, возникающими в ходе работ по искусственному интеллекту.

Первая проблема связана с возможной потерей стимулов к творческому труду в результате массовой компьютеризации или использования машин в сфере искусств. Однако в последнее время стало ясно, что человек добровольно не отдаст самый квалифицированный творческий труд, так как он для самого человека является привлекательным.

Вторая проблема носит более серьезный характер, и на нее неоднократно указывали такие специалисты, как Н. Винер, Н. М. Амосов, И. А. Полетаев и другие. Состоит она в следующем. Уже сейчас существуют машины и программы, способные в процессе работы самообучаться, то есть повышать эффективность приспособления к внешним факторам. В будущем, возможно, появятся машины, обладающие таким уровнем приспособляемости и надежности, что необходимость человеку вмешиваться в процесс отпадет. В этом случае возможна потеря самим человеком своих качеств, ответственных за поиск решений. Налицо возможная деградация способностей человека к реакции на изменение внешних условий и, возможно, неспособность принятия управления на себя в случае аварийной ситуации. Встает вопрос о целесообразности введения некоторого предельного уровня в автоматизации процессов, связанных с тяжелыми аварийными ситуациями. В этом случае у человека, «надзирающим» за управляющей машиной, всегда хватит умения и реакции таким образом воздействовать на ситуацию, чтобы погасить разгорающуюся аварийную ситуацию. Таковые ситуации возможны на транспорте, в ядерной энергетике. Особо стоит отметить такую опасность в ракетных войсках стратегического назначения, где последствия ошибки могут иметь фатальный характер. Несколько лет назад в США начали внедрять полностью компьютеризированную систему запуска ракет по командам суперкомпьютера, обрабатывающего огромные массивы данных, собранных со всего света. Однако оказалось, что даже при условии многократного дублирования и перепроверки, вероятность ошибки оказалась бы столь велика, что отсутствие контролирующего оператора привело бы к непоправимой ошибке. От системы отказались.

Люди будут постоянно решать проблему искусственного интеллекта, постоянно сталкиваясь все с новыми проблемами. И, видимо, процесс этот бесконечен.

ЛИТЕРАТУРА

1. Кондрашев В.А. Новейший философский словарь. - Ростов н/Д: Феникс, 2005. - 672с.

2. Цеханов Т.В. Системы искусственного интеллекта // Dokument HTML - http://neural.narod.ru/index.

3. Поспелов Д.А. Из истории искусственного интеллекта: История искусственного интеллекта до середины 80-х годов // Новости искусственного интеллекта. - №4. 1994. - с.70-90.

4. Информационное общество: Сб. (Philosophy) - М.: ООО «Издательство АСТ», 2004. - 507с.

5. Шалютин С. М. Искусственный интеллект. - М.: Мысль, 1985. - с.422

6. Соколов Е. Н., Вайткявичус Г.Г. Нейроинтеллект: от нейрона к нейрокомпьютеру. - М.: Наука, 1989. - 237с.

7. Будко В.В. Философия науки: Учебное пособие. - Харьков: Консум, 2005. - 268с.

8. Бессонов Б.Н. Философия: история и современные задачи: Учебник. - М.: Норма, 2006. - 560с.

9. Волчек Е.З. Философия: Учебное пособие с хрестоматийными извлечениями. - Мн.: Интерпрессервис, 2003. - 544с.

10. Немов Р.С. Психология: Учебник. - М.: Владос, 2001. - 688с.

11. Искусственный интеллект: Справочник / Под. Ред. Э.В. Попова. - М.: Радио и связь, 1990. - 464с.

12. Історія філософії: Підручник / Ярошовець В.І., Бичко І.В,Бугров В.А. - К.: Вид. ПАРАПАН, 2002. - 774с.

13. Эндрю А. Искусственный интеллект. - М.: Мир, 1985. - 310с.

14. Колтовой А. Робот ради человека // Вокруг света. - №4 (2799). - 2007. - С.15-19.

15. Философский словарь / Под ред. И.Т. Фролова. - М.: Республика, 2001. - 719с.

16. Кунцман П., Буркард Ф.П. Філософія: dtv-Atlas. - К.:Знання-Прес, 2002. - 270 с.

17. Квасный Р. Искусственный интеллект // Dokument HTML - http://neural.narod.ru / index.

18. Константинов А. Очень искусственный интеллект // Наука и технологии. - №6. - 2007. - С. 23-27.

19. Анохин П.К. Мышление // Dokument HTML - http/www.galactic.org.ua/ prkiber 12.

Размещено на Allbest.ru

...

Подобные документы

    Анализ влияния искусственного интеллекта и искусственной жизни на философские проблемы человеческого мышления. Исследования искусственного интеллекта. Обзор вопросов теоретической доказуемости возможности или невозможности искусственного интеллекта.

    реферат , добавлен 08.04.2015

    Анализ проблемы субъекта и объекта как центральной проблемы философии Карла Маркса. Исследование гносеологических проблем в "Философских арабесках" Н.И. Бухарина. Особенности философских проблем развития науки, искусства, духовной культуры в целом.

    контрольная работа , добавлен 05.04.2012

    Анализ философских проблем молекулярной биологии. Проблемы философских оснований взаимосвязи теоретического и эмпирического знания в биологическом исследовании. Мировоззренческие проблемы и определение их места в общей концепции философии данной науки.

    реферат , добавлен 22.08.2013

    Китай как цивилизация особого типа. Знакомство с особенностями развития философии в Древнем Китае. Общая характеристика основных философских школ: даосизм, конфуцианство, моизм. Рассмотрение философских, религиозных и идеологических основ конфуцианства.

    реферат , добавлен 09.03.2017

    Особенности философского знания как отражение особенностей бытия человека. Проблема человека в философских и медицинских знаниях. Диалектика биологического социального в человеке. Философский анализ глобальных проблем современности. Научное познание.

    учебное пособие , добавлен 17.01.2008

    Изучение философских воззрений Платона и Аристотеля. Характеристика философских взглядов мыслителей эпохи Возрождения. Анализ учения И. Канта праве и государстве. Проблема бытия в истории философии, философский взгляд на глобальные проблемы человечества.

    контрольная работа , добавлен 07.04.2010

    Проблема философии как центральная проблема древнеиндийской философии. Основные идеи философских школ хинаяны и махаяны. История зарождения и развития китайской философии, особенности ее основных направлений. Анализ философских идей Ближнего Востока.

    курс лекций , добавлен 17.05.2010

    Понятие теодицеи как совокупности религиозно-философских доктрин. Философские взгляды. Телеологические учения различных философских школ, начиная с античных материалистов и стоиков, заканчивая эсхатологическими учениями христианства, иудаизма и ислама.

    контрольная работа , добавлен 24.11.2008

    Раскрытие антагонистического характера экономической структуры капиталистического общества Марксом в "Экономическо-философских рукописях 1844 года". Изложение основных положений экономической теории в книге "Капитал". Философские школы марксизма.

    контрольная работа , добавлен 09.05.2014

    Генезис историко-философских обозрений на общество. Три группы теорий развития общества. Две составляющих структуры общества как исторически сложившейся формы организации общества. Проблемы периодизации истории. Формационный и цивилизационный подходы.

  • 1.4. Социологический и культурологический подходы к исследованию науки. Проблема интернализма и экстернализма.
  • 2.1. Идеалы и нормы исследовательской деятельности. Историческая динамика идеалов
  • 2.2. Научная картина мира. Типы, структура, функции
  • 2.3. Философские основания науки
  • 3.1. Преднаука Древнего Востока. Научные знания Античности.
  • 3.2. Наука эпохи Средневековья. Основные черты
  • 3.3. Наука Нового Времени. Основные черты классической науки
  • 3.4. Неклассическая наука
  • 3.5. Современная постнеклассическая наука. Синергетика
  • 4.1. Традиции и новации в развитии науки. Научные революции, их типы
  • 4.2. Формирование частных теоретических схем и законов. Выдвижение гипотез и их предпосылки
  • 4.3. Построение развитой научной теории. Теоретические модели.
  • 5.1. Философская проблематика естественных наук. Основные принципы современной физики
  • 5.2. Философские проблемы астрономии. Проблема стабильности и
  • 5.3. Философские проблемы математики. Специфика математических
  • 6.1. Особенности научно-технического знания. Смысл вопроса о сущности техники
  • 6.2. Понятие «техника» в истории философии и культуры
  • 6.3. Инженерная деятельность. Основные этапы инженерной деятельности. Усложнение инженерной деятельности
  • 6.4. Философия техники и глобальные проблемы современной цивилизации. Гуманизация современной техники
  • 7.1. Понятие информации. Роль информации в культуре. Информационные теории в объяснении эволюции общества
  • 7.2. Виртуальная реальность, ее концептуальные параметры. Виртуальность в истории философии и культуры. Проблема симулякров
  • 7.3 Философский аспект проблемы построения «искусственного интеллекта»
  • 8.1. Науки естественные и гуманитарные. Научный рационализм в перспективе философской антропологии
  • 8.2. Субъект и объект социально-гуманитарного знания: уровни рассмотрения. Ценностные ориентации, их роль в социально-гуманитарных науках
  • 8.3. Проблема коммуникативности в социально-гуманитарных науках.
  • 8.4. Объяснение, понимание, интерпретация в социально-гуманитарных
  • 7.3 Философский аспект проблемы построения «искусственного интеллекта»

    Философская проблема искусственного интеллекта

    Основная философская проблема в области искусственного интеллекта заключается в доведении возможности и целесообразности моделирования процесса мышления человека. Существует опасность тратить время на изучение того, что невозможно создать, в частности, на современном этапе развития человечества. Примером подобного времяпрепровождения может быть занятие научным коммунизмом - наукой, что на протяжении десятилетий изучала то, чего нет, и в обозримом будущем быть не может. Рассмотрим ряд доказательств, которые подводят к положительному ответу на вопрос возможности создания искусственного интеллекта.

    Первое доказательство выходит из области схоластики и говорит о непротиворечия искусственного интеллекта и Библии. Об этом говорят слова священного писания: «И создал Господь Бог человека по своему образу и подобию». Исходя из этих слов, можно утверждать, что, поскольку люди по своей сути подобные Творцу, то они вполне могут искусственным путем создать несколько по собственному образу и подобию.

    Второй довод вытекает из успехов человечества, достигнутых в области создания нового разума биологическим путем. В 90-х годах прошлого столетия появилась возможность клонирования млекопитающих, начиная с овечки Долли. Дальнейшие достигнутые успехи в данном направлении заключаются в создании форм искусственной жизни, не имеющие никакого естественного экземпляра, к которому бы они были похожи. Например, кролики с дополнительным геном, что создает эффект светлячка. В отличие от клонов, эти формы в полной мере представляют собой искусственную жизнь. Вместе с тем, такие существа можно считать интеллектуальными, учитывая их способности к элементарному обучению. Поэтому они могут называться системами искусственного интеллекта, хотя несотворенным на основе использования средств вычислительной техники, которые представляют наибольший интерес для человечества.

    Третий довод - это доказательство возможности самовоспроизведения объектов, состоящих из неживой материи. Способность к самовоспроизводству, как признак наличия интеллекта, долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе, например, рост кристаллов, синтез сложных молекул через копирования, во многом идентичны самовоспроизводству.

    В начале 50-х годов прошлого столетия Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории автоматов, «самовоспроизводящихся». Он также доказал теоретическую возможность управляемой инициализации самовоспроизведению. На сегодня, существует много различных неформальных доказательств возможности самовоспроизведения объектов, но для программистов наиболее существенный довод заключается в существовании компьютерных вирусов.

    Четвертое доказательство - это существование принципиальной возможности автоматизации решения интеллектуальных задач с помощью вычислительной техники. Она обеспечивается ее свойством алгоритмической универсальности. Алгоритмическая универсальность вычислительных машин означает, что на них можно программно реализовывать любые алгоритмы преобразования информации: вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем и т.д. При этом, подразумевается, что процессы, порождаемые этими алгоритмами, являются потенциально осуществимыми, то есть, что они осуществляются в результате проведения конечного количества элементарных операций.

    Практическая реализация алгоритмов зависит от существующих вычислительных мощностей, которые изменяются с развитием техники. В частности, вследствие появления быстродействующих компьютеров, стало практически возможным создание программных систем, способных реализовывать такие алгоритмы, которые ранее считались лишь потенциальноосуществимыми.

    Для обозначения программных систем, использующих искусственный интеллект, сложился общий срок - интеллектуальная система. Целесообразность создания интеллектуальных систем заключается в необходимости решения задач, которые не решаются на достаточном уровне эффективности программными системами, созданными на жесткой алгоритмической основе. К таким задачам относятся задачи, имеющие, как правило, следующие особенности:

    у них неизвестный алгоритм решения - такие задачи носят названия интеллектуальных задач;

    в них используется, помимо традиционных форматов данных, информация в виде графических изображений, рисунков, звуков;

    в них предполагается наличие свободы выбора - то есть, отсутствие единого алгоритма решения задачи обусловливает необходимость сделать выбор между вариантами действий в условиях неопределенности.

    Приведенный перечень задач формирует особенности интеллектуальных систем, предназначенных для их решения. Источником такого определения особенностей фактически является известный тест Тьюринга, предложенный британским математиком и одним из первых исследователей в области компьютерных наук Аланом Тьюрингом (Alan Turing). В данном тесте экспериментатор, обмениваясь сообщениями с подопытным объектом, пытается определить, кем он является на самом деле: человеком или компьютерной программой.

    Интеллектуальная система, успешно прошла такой тест, считается сильным искусственным интеллектом. Термин «сильный искусственный интеллект» пропагандируется специалистами, которые считают, что искусственный интеллект должен базироваться на строгой логической основе. В отличие от сильного, слабый искусственный интеллект, по их мнению, базируется исключительно на одном из методов решения интеллектуальных задач (искусственных нейронных сетях, генетических алгоритмах, эволюционных методах). В наши дни стало очевидным, что ни один из методов искусственного интеллекта не позволяет успешно решить приемлемое количество задач - лучше проявляет себя использование комбинации методов.

    Не следует думать, что интеллектуальные системы могут, решать любые задачи. Математиками было доказано существование таких типов задач, для которых невозможен единый алгоритм, чтобы воспроизводил их эффективные решения. В этом контексте определяется невозможность решения задач такого типа с помощью интеллектуальных систем, разработанных для вычислительных машин. Кроме того, утверждение про алгоритмическую невозможность решения некоторого класса задач является одновременно и прогнозом на будущие времена, согласно которому алгоритмы их решения не будут найдены никогда.

    Этот факт способствует лучшему пониманию того, где в современном мире могут найти свое практическое применение системы искусственного интеллекта. В частности, для решения задачи, не имеет универсального алгоритма решения, целесообразно ее сужение до уровня, когда она решается только для определенного подмножества начальных условий. Такие решения по силам интеллектуальным системам, а их результат способен сузить, для человека, область вариантов интуитивного выбора.

    Можно выделить две основные линии работ по искусственному интеллекту. Первая связана с совершенствованием самих машин, с повышением "интеллектуальности" искусственных систем. Вторая связана с задачей оптимизации совместной работы "искусственного интеллекта" и собственно интеллектуальных возможностей человека.

    В 1963 г. выступая на совещании по философским вопросам физиологии ВНД и психологии, А. Н. Леонтьев сформулировал следующую позицию: машина воспроизводит операции человеческого мышления, и следовательно соотношение "машинного" и "немашинного" есть соотнесение операционального и неоперационального в человеческой деятельности в то время этот вывод был достаточно прогрессивен и выступал против кибернетического редукционизма. Однако в последствии при сравнении операций, из которых слагается работа машины, и операций как единиц деятельности человека выявились существенные различия - в психологическом смысле "операция" отражает способ достижения результатов, процессуальную характеристику, в то время как применительно к машинной работе этот термин используется в логико-математическом смысле (характеризуется результатом).

    В работах по искусственному интеллекту постоянно используется термин "цель". Анализ отношения средств к цели А. Ньюэлл и Г. Саймон называют в качестве одной из "эвристик". В психологической теории деятельности "цель" является конституирующим признаком действия в отличии от операций (и деятельности в целом) . В то время как в искусственных системах "целью" называют некоторую конечную ситуацию к которой стремится система. Признаки этой ситуации должны быть четко выявленными и описанными на формальном языке. Цели человеческой деятельности имеют другую природу. Конечная ситуация может по разному отражаться субъектом: как на понятийном уровне, так и в форме представлений или перцептивного образа. Это отражение может характеризоваться разной степенью ясности, отчетливости. Кроме того, для человека характерно не просто достижение готовых целей но и формирование новых.

    Также работа систем искусственно интеллекта, характеризуется не просто наличием операций, программ, "целей", а как отмечает О. К. Тихомиров, - оценочными функциями. И у искусственных систем есть своего рода "ценностные ориентации". Но специфику человеческой мотивационно-эмоциональной регуляции деятельности составляет использование не только константных, но и ситуативно возникающих и динамично меняющихся оценок, существенно также различие между словесно-логическими и эмоциональными оценками. В существовании потребностей и мотивов видится различие между человеком и машиной на уровне деятельности. Этот тезис повлек за собой цикл исследований, посвященных анализу специфики человеческой деятельности.

    Между прочим, именно недостаточная изученность процесса целеобразования нашла свое отражение в формулировании "социального заказа" для психологии со стороны исследователей проблемы существенное стимулирующее влияние психологической науки.

    Информационная теория эмоций Симонова также в значительной степени питается аналогиями с работами систем искусственного интеллекта. Кроме того, проблема волевого принятия решения в психологии в некоторых работах рассматривается как формальный процесс выбора одной из множества заданных альтернатив, опуская тем самым специфику волевых процессов.

    Таким образом все три традиционные области психологии - учения о познавательных, эмоциональных и волевых процессах оказались под влиянием работ по ИИ, что по мнению О. К. Тихомирова привело к оформлению нового предмета психологии - как наука о переработке информации, научность этого определения достигалась за счет "технизации" психологического знания.

    Обращаясь к проблеме роли ИИ в обучения Л. И. Ноткин рассматривает этот процесс как одну из разновидностей взаимодействия человека с ЭВМ, и раскрывает среди перспективных возможностей те, которые направлены на создание так называемых адаптивных обучающихся систем, имитирующих оперативный диалог учащегося и преподавателя-человека.

    Таким образом, взаимодействие между исследованиями искусственного интеллекта и психологической наукой можно охарактеризовать как плодотворный диалог, позволяющий если не решать, то хотя бы научиться задавать вопросы такого высокого философского уровня как - "Что есть человек? "

    Лекция 8. ФИЛОСОФСКИЕ ПРОБЛЕМЫ СОЦИАЛЬНО-ГУМАНИТАРНЫХ НАУК

    В современном обществе процессы информа­тизации приобретают глобальный характер. Информатика, ком­пьютерная техника, автоматизированные системы определяют магистральные направления развития и эффективность произ­водства и технологий, проектно-конструкторских разработок и

    научных исследований.

    Компьютеры существенно преобразуют содержание и характер труда и обучения, по-новому ставят про­блемы развития человеческого интеллекта и личности, оказывают серьезное влияние на мировоззрение человека. Осмысление со­циальных, интеллектуальных и культурных последствий массово­го внедрения информационных технологий составляет важней­шую задачу современной философии. Философские проблемы современной информатики включают в себя гносеологические, онтологические, антропологические, этические, культурологиче­ские, социально-исторические аспекты .

    Одной из серьезных гносеологических проблем, ставшей осо­бенно актуальной в связи с развитием информатики, является проблема соотношения мышления человека и машинного мышления, «искусственного интеллекта».

    Проблема соотношения человеческого и машинного мышле­ния породила полярные мнения о возможностях искусственного интеллекта - от «машинопоклонников», против которых предо­стерегал Винер в своей книге «Творец и робот», преклоняющихся перед машиной «за то, что она свободна от человеческих ограни­чений в отношении скорости и точности» , до исследо­вателей, не склонных надеяться на быстрый и бесконечный про­гресс в этой области . Еще в 1960-е гг. Винер отмечал несом­ненные достоинства мозга человека как органа мышления по сравнению с машинами. «Главное из этих преимуществ, по-види­мому, способность мозга оперировать с нечетко очерченными по­нятиями. В таких случаях вычислительные машины, по крайней мере в настоящее время, почти не способны к самопрограммиро­ванию. Между тем наш мозг свободно воспринимает стихи, рома­ны, картины, содержание которых любая вычислительная маши­на должна была бы отбросить как нечто аморфное. Отдайте же че­ловеку - человеческое, а вычислительной машине - машинное. В этом и должна, по-видимому, заключаться разумная линия по­ведения при организации совместных действий людей и машин. Линия эта в равной мере далека и от устремлений машинопоклон- ников, и от воззрений тех, кто во всяком использовании механи­ческих помощников в умственной деятельности усматривает ко­щунство и принижение человека» .

    За время, которое прошло с тех пор, когда Винер высказал эти мысли, компьютерная техника и технология использования

    компьютеров настолько усовершенствовались, что возник вопрос о разработке особой части теории познания. Новая область гно­сеологии была обозначена как информационная эпистемология, ее задача - исследование процесса формирования знаний в компью­терах. Решение этой задачи предполагает пересмотр или уточ­нение многих понятий традиционной гносеологии, рассматри­вающей интеллект как человеческое качество в тесной связи с по­знавательными способностями человека и его деятельностью. В оценках современными исследователями роли искусственного интеллекта в развитии человечества в настоящем и будущем мож­но выделить два подхода.

    Первый подход наиболее четко сформулировал А.П. На- заретян в книге «Интеллект во Вселенной». По его мнению, воз­растание удельного веса умственного труда в человеческой дея­тельности отражает общеэволюционный закон, который требует для сложных систем опережающего развития интеллекта по отно­шению к двум другим векторам роста - технологическому потен­циалу и организационной сложности - и соответственно к управ­ленческим притязаниям . По мере решения других глобальных проблем на передний план будет выступать новая - отношения между естественным и искусственным разумом. И если человече­ство дорастет до реального возникновения проблемы «двоевла­стия интеллектов», то конфронтационные подходы к ее решению будут сразу же отброшены, речь может идти только о разных вари­антах их синтеза. Формирование таких симбиозных структур в перспективе обеспечило бы диалектическое снятие противоречий между безграничными потенциями интеллектуального развития и ограниченными возможностями, потребностями, мотивами био­логического организма.

    Второй подход разработал менее оптимистично настро­енный современный российский ученый А.А. Мальцев. Его статья «Интеллект и ресурс» - попытка остудить восторги горячих по­клонников искусственного интеллекта и их надежды на решение всех проблем при помощи компьютерного мышления. Он указы­вает, что уже сейчас приходится сталкиваться с некоторыми прин­ципиальными ограничениями при составлении алгоритмов, по которым работают компьютеры. Кроме того, Мальцев ставит во­прос о переэксплуатации, истощении интеллектуального ресурса, об определенном «суммарном потолке» человеческого интеллек-

    та, существование которого значительно ограничивает возможно­сти прогресса в этой области.

    Другая важнейшая философская проблема современной ин­форматики состоит в появлении нового типа бытия - машин­но-информационного и связанного с этим вопросом об опреде­лении онтологического статуса виртуальной реальности (от лат.

    У^иаПБ - возможный, такой, который может или должен поя­виться при определенных условиях). Развитие современных ин­формационных технологий привело к формированию нового по­нятия - «виртуальная реальность», которое означает, что человек может видеть, слышать, переживать посредством персонального компьютера и глобальной компьютерной сети. Многие ученые свя­зывают с виртуальной реальностью образованную компьютерны­ми средствами модель реальности, которая создает эффект присут­ствия человека в ней, позволяет действовать с воображаемыми объектами. Проблемы виртуальности оформились в самостоя­тельное направление в психологии, поскольку виртуальная реаль­ность тесно связана с психологическими характеристиками лич­ности, представляя собой инореальность, в которой обнаружива­ются свобода и произвол человеческих мотиваций. Психологи изучают личностные цели моделирования виртуальной реально­сти, выделяя в качестве приоритетных: состояние удовлетворенно­сти, компенсацию эмоциональных или ментальных потерь, поиск смыслов в условиях гипотетического, условно предполагаемого диалога.

    В то же время проблемы виртуальности нуждаются в философ­ской рефлексии основных свойств виртуального бытия на уровне его теоретического анализа. Говоря об атрибутике виртуальной реальности, необходимо отметить два противоречивых момента: с одной стороны, виртуальная реальность идентична актуальной реальности - она включает в себя пространство, время, движение, развитие, отражение, а с другой - она обладает идеал ьно-артефакт- ными, виртуально-специфическими свойствами .

    Принципиально новыми, требующими научного исследова­ния и философского осмысления являются следующие свойства виртуальной реальности:

    0 панорамность - любое событие может быть прочитано и с точки зрения собственной интерпретации, и с многих других точек зре­ния;

    о полисемантичность - виртуальная реальность обостряет про­блемы личной самоидентификации и в то же время полностью их снимает, делая личность безразличной ее объективному бы­тию;

    о бестелесная предметность - виртуальная реальность, фиксируя множество несводимых друг к другу, онтологически самосто­ятельных реальностей, является их моделирующей имитацией, причем виртуальная реальность моделируется в соответствии с потребностями телесного и экзистенциального характера и соз­дает возможные поля и срезы проявлений двойственности чело­века. В качестве основных функций виртуальной реальности на­зывают: порожденность, актуальность, автономность, интерак­тивность .

    При решении проблемы типологизации виртуального бытия стоит сопоставить понятие виртуальной реальности и утвердив­шееся в физике понятие «виртуальная частица». «Виртуальная частица - это такие объекты в квантовой теории поля, наделен­ные всеми теми же характеристиками, что и реальные “физиче­ские частицы”, но не удовлетворяющие некоторым существен­ным условиям. Например, для виртуального фотона масса его не обязательно нулевая, а энергия не является обязательно положи­тельной. Ни одна из них не существует таким образом, как обыч­ные частицы. Они не обладают бытием наличным, выступают как бы на мгновение из потенциальности, полностью никогда не ак­туализируясь» .

    По мнению многих авторов, если применительно к виртуаль­ным частицам можно говорить об их мерцающем, недовопло- щенном существовании, то компьютерная виртуальная реаль­ность - область парадоксального. Виртуальная реальность дос­таточно осязаема, но предметной сущностью, бытием самим по себе не обладает; она существует, пока ее существование поддер­живается активностью порождающей сферы. По мнению

    А.Ю. Севальникова, «парадоксальность такого бытия состоит в том, что “существует” то, чего по сути нет» . На наш взгляд, наиболее точно отражает сущность виртуальной реально­сти подход, основанный на признании ее полионтологичности, множественности ее бытийного проявления: «Подход, основан­ный на признании полионтичной реальности, получил название виртуалистики» . Виртуалистика - проблема Homo 17*

    (человек виртуальный), актуализация которой стала след­ствием информационной революции, ждет своего осмысления. По мнению многих исследователей, именно эта проблема станет одной из центральных в XXI в.

    БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    1. Винер Н. Творец и робот. М., 1966.

    2. Лешкевич Г. Г. Актуальные проблемы науки XXI в.: Философия для ас­пирантов: учеб, пособие. Ростов н/Д, 2003.

    3. Лопатин В.Н. Информационная безопасность России: Человек. Об­щество. Государство. СПб., 2000.

    4. Мальцев А.А. Интеллект как ресурс // Мышление, когнитивные нау­ки, искусственный интеллект, М., 1988.

    5. Назаретян А.Л. Интеллект во Вселенной. М., 1991.

    6. Носов Н.А. Виртуальная парадигма // Виртуальные реальности. М., 1998.

    7. Севальников А.Ю. Виртуальная реальность и проблема ее описания // Смирновские чтения. М., 1999.

    8. Сидоров М.М. Философские проблемы информатики // Философия; под ред. В.Н. Лавриненко. М., 2004.

    Никто не может предсказать, как поведут себя системы, созданные с помощью совершенного искусственного интеллекта. Тем не менее предположений много, рассмотрим в чем же заключается проблема искусственного итнеллекта .

    Философская проблема искусственного интеллекта

    Основная философская проблема в области искусственного интеллекта заключается в доведении возможности и целесообразности моделирования процесса мышления человека. Существует опасность тратить время на изучение того, что невозможно создать, в частности, на современном этапе развития человечества. Примером подобного времяпрепровождения может быть занятие научным коммунизмом — наукой, что на протяжении десятилетий изучала то, чего нет, и в обозримом будущем быть не может. Рассмотрим ряд доказательств, которые подводят к положительному ответу на вопрос возможности создания .

    Первое доказательство выходит из области схоластики и говорит о непротиворечия искусственного интеллекта и Библии . Об этом говорят слова священного писания: «И создал Господь Бог человека по своему образу и подобию». Исходя из этих слов, можно утверждать, что, поскольку люди по своей сути подобные Творцу, то они вполне могут искусственным путем создать несколько по собственному образу и подобию.

    Второй довод вытекает из успехов человечества, достигнутых в области создания нового разума биологическим путем. В 90-х годах прошлого столетия появилась возможность клонирования млекопитающих, начиная с овечки Долли. Дальнейшие достигнутые успехи в данном направлении заключаются в создании форм искусственной жизни, не имеющие никакого естественного экземпляра, к которому бы они были похожи. Например, кролики с дополнительным геном, что создает эффект светлячка. В отличие от клонов, эти формы в полной мере представляют собой искусственную жизнь . Вместе с тем, такие существа можно считать интеллектуальными, учитывая их способности к элементарному обучению. Поэтому они могут называться системами искусственного интеллекта, хотя несотворенным на основе использования средств вычислительной техники, которые представляют наибольший интерес для человечества.

    Третий довод — это доказательство возможности самовоспроизведения объектов , состоящих из неживой материи. Способность к самовоспроизводству, как признак наличия интеллекта, долгое время считалась прерогативой живых организмов. Однако некоторые явления, происходящие в неживой природе, например, рост кристаллов, синтез сложных молекул через копирования, во многом идентичны самовоспроизводству.

    Исследование искусственного интеллекта

    В начале 50-х годов прошлого столетия Дж. фон Нейман занялся основательным изучением самовоспроизведения и заложил основы математической теории автоматов, «самовоспроизводящихся». Он также доказал теоретическую возможность управляемой инициализации самовоспроизведению. На сегодня, существует много различных неформальных доказательств возможности самовоспроизведения объектов, но для программистов наиболее существенный довод заключается в существовании компьютерных вирусов.

    Четвертое доказательство — это существование принципиальной возможности автоматизации решения интеллектуальных задач с помощью вычислительной техники. Она обеспечивается ее свойством алгоритмической универсальности. Алгоритмическая универсальность вычислительных машин означает, что на них можно программно реализовывать любые алгоритмы преобразования информации: вычислительные алгоритмы, алгоритмы управления, поиска доказательства теорем и т.д. При этом, подразумевается, что процессы, порождаемые этими алгоритмами, являются потенциально осуществимыми, то есть, что они осуществляются в результате проведения конечного количества элементарных операций.

    Практическая реализация алгоритмов зависит от существующих вычислительных мощностей, которые изменяются с развитием техники. В частности, вследствие появления быстродействующих компьютеров, стало практически возможным создание программных систем, способных реализовывать такие алгоритмы, которые ранее считались лишь потенциально осуществимыми.

    Для обозначения программных систем, использующих искусственный интеллект, сложился общий срок — интеллектуальная система . Целесообразность создания интеллектуальных систем заключается в необходимости решения задач, которые не решаются на достаточном уровне эффективности программными системами, созданными на жесткой алгоритмической основе. К таким задачам относятся задачи, имеющие, как правило, следующие особенности:

    • у них неизвестный алгоритм решения — такие задачи носят названия интеллектуальных задач;
    • в них используется, помимо традиционных форматов данных, информация в виде графических изображений, рисунков, звуков;
    • в них предполагается наличие свободы выбора — то есть, отсутствие единого алгоритма решения задачи обусловливает необходимость сделать выбор между вариантами действий в условиях неопределенности.

    Приведенный перечень задач формирует особенности интеллектуальных систем, предназначенных для их решения. Источником такого определения особенностей фактически является известный тест Тьюринга , предложенный британским математиком и одним из первых исследователей в области компьютерных наук Аланом Тьюрингом (Alan Turing). В данном тесте экспериментатор, обмениваясь сообщениями с подопытным объектом, пытается определить, кем он является на самом деле: человеком или компьютерной программой.

    Интеллектуальная система, успешно прошла такой тест, считается сильным искусственным интеллектом. Термин «сильный искусственный интеллект» пропагандируется специалистами, которые считают, что искусственный интеллект должен базироваться на строгой логической основе. В отличие от сильного, слабый искусственный интеллект, по их мнению, базируется исключительно на одном из методов решения интеллектуальных задач (искусственных нейронных сетях, генетических алгоритмах, эволюционных методах). В наши дни стало очевидным, что ни один из методов искусственного интеллекта не позволяет успешно решить приемлемое количество задач — лучше проявляет себя использование комбинации методов.

    Первая программа, прошедшая тест Тьюринга, была написана в ходе проведения психологических экспериментов Стивеном Вейценбаум (Steven Weizenbaum) в 1967 году. С тех пор уровень знаний в этой области значительно возрос, а способы взаимодействия экспериментатора с объектом исследования стали гораздо совершеннее. В наши времена проводятся отдельные соревнования с призовым фондом в сотни тысяч долларов США под названием: «Соревнование за приз Лебнера», в ходе которых определяется лучшая программа.

    Не следует думать, что интеллектуальные системы могут, решать любые задачи. Математиками было доказано существование таких типов задач, для которых невозможен единый алгоритм, чтобы воспроизводил их эффективные решения. В этом контексте определяется невозможность решения задач такого типа с помощью интеллектуальных систем, разработанных для вычислительных машин. Кроме того, утверждение про алгоритмическую невозможность решения некоторого класса задач является одновременно и прогнозом на будущие времена, согласно которому алгоритмы их решения не будут найдены никогда.

    Этот факт способствует лучшему пониманию того, где в современном мире могут найти свое практическое . В частности, для решения задачи, не имеет универсального алгоритма решения, целесообразно ее сужение до уровня, когда она решается только для определенного подмножества начальных условий. Такие решения по силам интеллектуальным системам, а их результат способен сузить, для человека, область вариантов интуитивного выбора.