Эволюция звезд рождение жизнь. Жизненный цикл звезды - описание, схема и интересные факты. Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью

Наше Солнце светит уже более 4,5 млрд. лет. При этом оно постоянно расходует водород. Абсолютно ясно, что как бы не велики были его запасы, но когда-то они будут исчерпаны. И что же произойдёт со светилом? На этот вопрос есть ответ. Жизненный цикл звезды можно изучить по другим аналогичным космическим образованиям. Ведь в космосе существуют настоящие патриархи, возраст которых составляет 9-10 млрд. лет. А есть совсем юные звёздочки. Им от роду не более нескольких десятков млн. лет.

Следовательно, наблюдая за состояние различных звёзд, которыми "усыпана" Вселенная, можно понять, как они себя ведут с течением времени. Здесь можно провести аналогию с наблюдателем-инопланетянином. Он прилетел на Землю и стал изучать людей: детей, взрослых, стариков. Таким образом, за совсем короткий период времени он понял, какие изменения происходят с людьми в течение жизни.

В настоящее время Солнце является жёлтым карликом - 1
Пройдут миллиарды лет, и оно станет красным гигантом - 2
А затем превратится в белого карлика - 3

Поэтому можно со всей уверенностью сказать, что когда запасы водорода в центральной части Солнца будут исчерпаны, термоядерная реакция не прекратится . Зона, где будет продолжаться этот процесс, начнёт сдвигаться к поверхности нашего светила. Но при этом силы гравитации уже не смогут влиять на давление, которое образуется в результате термоядерной реакции.

Как следствие, звезда начнёт разрастаться в размерах и постепенно превратится в красного гиганта . Это космический объект поздней стадии эволюции. Но таковым же он бывает и на ранней стадии во время звёздообразования. Только во втором случае красный гигант сжимается и превращается в звезду главной последовательности . То есть в такую, в которой идёт реакция синтеза гелия из водорода. Одним словом, с чего жизненный цикл звезды начинается, тем и заканчивается.

Наше Солнце увеличится в размерах настолько, что поглотит ближайшие планеты. Это Меркурий , Венера и Земля . Но не надо пугаться. Умирать светило начнёт через несколько млрд. лет. За это время сменятся десятки, а может и сотни цивилизаций. Человек ещё не раз возьмёт в руки дубину, а по прошествию тысячелетий опять сядет за компьютер. Это обычная цикличность, на которой базируется вся Вселенная.

Но превращение в красного гиганта ещё не означает конец. Термоядерная реакция будет отбрасывать в космос внешнюю оболочку. А в центре будет оставаться лишённое энергии гелиевое ядро. Под действием сил тяготения оно будет сжиматься и, в конце концов, превратится в чрезвычайно плотное с большой массой космическое образование. Такие остатки потухших и медленно остывающих звёзд называются белыми карликами .

У нашего белого карлика радиус будет в 100 раз меньше радиуса Солнца, а светимость уменьшится в 10 тыс. раз. При этом масса будет сравнимой с нынешней солнечной, а плотность будет больше в миллион раз. Таких белых карликов в нашей Галактике очень много. Их численность составляет 10% от общего числа звёзд.

Надо отметить, что белые карлики бывают водородными и гелиевыми. Но мы не будем лезть в дебри, а только заметим, что при сильном сжатии может наступить гравитационный коллапс. А это чревато колоссальным взрывом. При этом наблюдается вспышка сверхновой звезды. Термин "сверхновый" характеризует не возраст, а яркость вспышки. Просто белого карлика долго не было видно в космической бездне, и вдруг появилось яркое свечение.

Большая часть взорвавшейся сверхновой звезды разлетается в пространстве с огромной скоростью. А оставшаяся центральная часть сжимается в ещё более плотное образование и называется нейтронной звездой . Это конечный продукт звёздной эволюции. Его масса сравнима с солнечной, а радиус достигает всего лишь нескольких десятков км. Один куб. см нейтронной звезды может весить миллионы тонн. В космосе таких образований довольно много. Их количество примерно в тысячу раз меньше обычных солнц, которыми усыпано ночное небо Земли.

Надо сказать, что жизненный цикл звезды напрямую связан с её массой. Если она соответствует массе нашего Солнца или меньше её, то в конце жизни появляется белый карлик. Однако существуют светила, которые в десятки и сотни раз больше Солнца.

Когда такие гиганты сжимаются в процессе старения, то они так искажают пространство и время, что вместо белого карлика появляется чёрная дыра . Её гравитационное притяжение так велико, что его не могут преодолеть даже те объекты, которые движутся со скоростью света. Размеры дыры характеризует гравитационный радиус . Это радиус сферы, ограниченной горизонтом событий . Он представляет собой пространственно-временной предел. Любое космическое тело, преодолев его, исчезает навсегда и никогда не возвращается обратно.

О чёрных дырах существует много теорий. Все они базируются на теории гравитации, так как именно гравитация является одной из важнейших сил Вселенной. А основное её качество - универсальность . По-крайней мере, в наши дни не обнаружено ни одного космического объекта, у которого бы отсутствовало гравитационное взаимодействие.

Есть предположение, что через чёрную дыру можно попасть в параллельный мир. То есть это канал в другое измерение. Всё возможно, но любое утверждение требует практических доказательств. Однако пока ещё никто из смертных не смог осуществить подобный эксперимент.

Таким образом, жизненный цикл звезды состоит из нескольких стадий. В каждой из них светило выступает в определённом качестве, которое кардинально отличается от предыдущих и будущих. В этом и заключается неповторимость и таинственность космического пространства. Знакомясь с ним, невольно начинаешь думать, что человек тоже проходит несколько стадий в своём развитии. А та оболочка, в которой мы существуем сейчас, является лишь переходным этапом к какому-то иному состоянию. Но это умозаключение опять же требует практического подтверждения .

> Жизненный цикл звезды

Описание жизни и смерти звезд : этапы развития с фото, молекулярные облака, протозвезда, T Тельца, главная последовательность, красный гигант, белый карлик.

Все в этом мире развивается. Любой цикл начинается с рождения, роста и завершается смертью. Конечно, у звезд эти циклы проходят по-особенному. Вспомним хотя бы, что временные рамки у них более масштабные и измеряются миллионами и миллиардами лет. Кроме того, их смерть несет определенные последствия. Как же выглядит жизненный цикл звезд ?

Первый жизненный цикл звезды: Молекулярные облака

Начнем с рождения звезды. Представьте себе огромное облако холодного молекулярного газа, которое может спокойно существовать во Вселенной без всяких изменений. Но вдруг недалеко от него взрывается сверхновая или же оно наталкивается на другое облако. Из-за такого толчка активируется процесс разрушения. Оно делится на небольшие части, каждая их которых втягивается в себя. Как вы уже поняли, все эти кучки готовятся стать звездами. Гравитация накаляет температуру, а сохраненный импульс поддерживает процесс вращения. Нижняя схема наглядно демонстрирует цикл звезд (жизнь, этапы развития, варианты трансформации и смерть небесного тела с фото).

Второй жизненный цикл звезды: Протозвезда

Материал сгущается плотнее, нагревается и отталкивается от гравитационного коллапса. Такой объект называют протозвездой, вокруг которого формируется диск материала. Часть притягивается к объекту, увеличивая его массу. Остальные же обломки сгруппируются и создадут планетарную систему. Дальше развитие звезды все зависит от массы.

Третий жизненный цикл звезды: Т Тельца

При попадании материала на звезду, высвобождается огромное количество энергии. Новый звездный этап назвали в честь прототипа – Т Тельца. Это переменная звезда, расположенная в 600 световых годах (недалеко от ).

Она может достигать большой яркости, потому что материал разрушается и освобождает энергию. Но в центральной части не хватает температуры, чтобы поддерживать ядерный синтез. Эта фаза длится 100 миллионов лет.

Четвертый жизненный цикл звезды: Главная последовательность

В определенный момент температура небесного тела поднимается к необходимой отметке, активируя ядерный синтез. Через это проходят все звезды. Водород трансформируется в гелий, выделяя огромный тепловой запас и энергию.

Энергия высвобождается как гамма-лучи, но из-за медленного движение звезды она падает с длиной волны. Свет выталкивается наружу и вступает в конфронтацию с гравитацией. Можно считать, что здесь создается идеальное равновесие.

Сколько она пробудет в главной последовательности? Нужно исходить из массы звезды. Красные карлики (половина солнечной массы) способны тратить топливный запас сотни миллиардов (триллионы) лет. Средние звезды (как ) живут 10-15 миллиардов. А вот наиболее крупные – миллиарды или миллионы лет. Посмотрите, как выглядит эволюция и смерть звезд различных классов на схеме.

Пятый жизненный цикл звезды: Красный гигант

В процессе плавления водород заканчивается, а гелий накапливается. Когда водорода совсем не остается, все ядреные реакции замирают, и звезда начинает сжиматься из-за силы тяжести. Водородная оболочка вокруг ядра нагревается и зажигается, заставляя объект вырастать в 1000-10000 раз. В определенный момент и наше Солнце повторит эту судьбу, увеличившись до земной орбиты.

Температура и давление достигают максимума, и гелий сплавляется в углерод. В этой точке звезда сжимается и перестает быть красным гигантом. При большей массивности объект будет сжигать другие тяжелые элементы.

Шестой жизненный цикл звезды: Белый карлик

Звезда с солнечной массой не располагает достаточным гравитационным давлением, чтобы сплавить углерод. Поэтому смерть наступает с окончанием гелия. Происходит выброс внешних слоев и появляется белый карлик. Сначала он горячий, но через сотни миллиардов лет остынет.

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*10 9) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности . Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе , однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.


NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 10 12 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 10 16 или даже 10 22 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.


Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 10 14 — 10 15 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 10 12 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 10 14 — 10 15 лет до превращения в чёрный карлик.

Время жизни звезд состоит из нескольких этапов, проходя через которые миллионы и миллиарды лет светила неуклонно стремятся к неизбежному финалу, превращаясь в яркие вспышки или в угрюмый черных дыр.

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Не пропустите наглядное интерактивное приложение « »!

Эпизод I. Протозвезды

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков . Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Эпизод IV. Конец существования звезд и их гибель

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, и . Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Интересные факты из жизненных циклов звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о звездах и их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.

Звезды, как и люди, могут быть новорожденными, молодыми, старыми. Каждый миг умирают одни звезды и образуются другие. Обычно самые юные из них похожи на Солнце. Они находятся на стадии формирования и фактически представляют собой протозвезды. Астрономы называют их звездами типа Т - Тельца, по имени своего прототипа. По своим свойствам - например, светимости - протозвезды являются переменными, поскольку их существование еще не вошло в стабильную фазу. Вокруг многих из них находится большое количество материи. От звезд типа Т исходят мощные ветровые потоки.

Протозвезды: начало жизненного цикла

Если на поверхность протозвезды падает вещество, оно быстро сгорает и превращается в тепло. Как следствие, температура протозвезд постоянно увеличивается. Когда она поднимается настолько, что в центре звезды запускаются ядерные реакции, протозвезда обретает статус обыкновенной. С началом протекания ядерных реакций у звезды появляется постоянный источник энергии, который поддерживает ее жизнедеятельность в течение длительного времени. Насколько долгой будет жизненный цикл звезды во Вселенной, зависит от ее первоначального размера. Однако считается, что у звезд, диаметром с Солнце, энергии хватит на то, чтобы безбедно существовать в течение приблизительно 10 млрд лет. Несмотря на это, случается и так, что даже более массивные звезды живут всего лишь несколько миллионов лет. Это происходит по причине того, что сжигают они свое топливо гораздо быстрее.

Звезды нормальных размеров

Каждая из звезд представляет собой сгустки горячего газа. В их глубинах постоянно происходит процесс выработки ядерной энергии. Однако не все звезды похожи на Солнце. Одно из главных различий заключается в цвете. Звезды бывают не только желтыми, но и синеватыми, красноватыми.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Попытки объяснить жизненный цикл звезд

Люди издавна пытались проследить жизнь звезд, однако первые попытки ученых были достаточно робкими. Первым достижением было применение закона Лейна к гипотезе Гельмгольца-Кельвина о гравитационном сжатии. Это принесло в астрономию новое понимание: теоретически температура звезды должна повышаться (ее показатель обратно пропорционален радиусу звезды) до тех пор, пока увеличение плотности не замедлит процессы сжатия. Тогда расход энергии будет выше, чем ее приход. В этот момент звезда начнет стремительно остывать.

Гипотезы о жизни звезд

Одна из оригинальных гипотез о жизненном цикле звезды была предложена астрономом Норманом Локиером. Он считал, что звезды возникают из метеорной материи. При этом положения его гипотезы опирались не только на имеющиеся в астрономии теоретические выводы, но и на данные спектрального анализа звезд. Локиер был убежден в том, что химические элементы, которые принимают участие в эволюции небесных тел, состоят из элементарных частиц - «протоэлементов». В отличие от современных нейтронов, протонов и электронов, они обладают не общим, а индивидуальным характером. Например, согласно Локиеру, водород распадается на так называемый «протоводород»; железо становится «протожелезом». Описать жизненный цикл звезды пытались и другие ученые-астрономы, например, Джеймс Хопвуд, Яков Зельдович, Фред Хойл.

Звезды-гиганты и звезды-карлики

Звезды больших размеров являются самыми горячими и яркими. На вид они обычно белые или голубоватого оттенка. Несмотря на то что они обладают гигантскими размерами, топливо внутри них сгорает настолько быстро, что они лишаются его за каких-то несколько миллионов лет.

Звезды небольших размеров, в противоположность гигантским, обычно не столь яркие. Они обладают красным цветом, живут достаточно долго - в течение миллиардов лет. Но среди ярких звезд на небосклоне есть также красные и оранжевые. Примером может послужить звезда Альдебаран - так называемый «глаз быка», находящийся в созвездии Тельца; а также в созвездии Скорпиона. Почему же эти холодные звезды способны конкурировать по яркости с раскаленными звездами, наподобие Сириуса?

Так происходит из-за того, что когда-то они очень сильно расширились, и по своему диаметру стали превосходить огромные красные звезды (сверхгиганты). Огромная площадь позволяет этим звездам излучать на порядок больше энергии, чем Солнце. И это несмотря на тот факт, что их температура намного ниже. К примеру, диаметр Бетельгейзе, находящейся в созвездии Ориона, в несколько сотен раз больше диаметра Солнца. А диаметр обыкновенных красных звезд обычно не составляет и десятой части размера Солнца. Такие звезды называют карликами. Эти виды жизненного цикла звезд может проходить каждое небесное светило - одна и та же звезда на разных отрезках своей жизни может быть и красным гигантом, и карликом.

Как правило, светила, подобные Солнцу, поддерживают свое существование за счет находящегося внутри водорода. Он превращается в гелий внутри ядерной сердцевины звезды. Солнце располагает огромным количеством топлива, однако даже оно не бесконечно - за последние пять миллиардов лет была израсходована половина запаса.

Время жизни звезд. Жизненный цикл звезд

После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура - напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.

Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго - всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако - гравитационный коллапс облака - рождение сверхновой звезды - эволюция протозвезды - окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды - середина жизни - зрелость - стадия красного гиганта - планетарная туманность - этап белого карлика. Последние две фазы свойственны звездам малого размера.

Природа планетарных туманностей

Итак, мы рассмотрели кратко жизненный цикл звезды. Но что представляет собой Превращаясь из огромного красного гиганта в белого карлика, иногда звезды сбрасывают внешние слои, и тогда ядро звезды становится обнаженным. Газовая оболочка начинает светиться под действием энергии, излучаемой звездой. Название свое эта стадия получила за счет того, что светящиеся газовые пузыри в этой оболочке часто похожи на диски вокруг планет. Но на самом деле они ничего общего с планетами не имеют. Жизненный цикл звезд для детей может не включать всех научных подробностей. Можно лишь описать основные фазы эволюции небесных светил.

Звездные скопления

Астрономы очень любят исследовать Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам - каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.