Средние величины и показатели вариации. Средние величины, их сущность и их виды

Предмет статистической науки и задачи статистики на современном этапе

Статистика произошло от лат «ststus»-состояние или положение. Статистика - это совокупность цифр; это вид деятельности по сбору и анализу данных; это наука сформировавшаяся в 18в и изначально называл «политическая арифметика». Предмет статист - количественная сторона массовых соц-экон явл в неразрывной связи с их качественной стороной в конкретн услов места и времени. Объект – общество происходящие в нем процессы, т.е. совокупность соц-экономических явлений. Основн метод статистики – закон больших чисел. Важнейшие задачи стат-ки – организ стат наблюдений; обраб-ка данных и получение системы обобщ показателей для анализа; предоставлен гос управл достов информации для своевремен принятия управл решений; публикац информации для информиров-я по соц-экон процессам. Стат. исследования проходят след этапы : 1.статистичек наблюдение(формы и виды сбора информ);2.стасистическа сводка и группировка(систематизация);3.расчет и анализ обобщающих показателей(абсолютн и относ велич, средн велич, показатели вариации, показатели выборочного наблюдения, показатели рядов динамики, индексы).

Статистическая совокупность, ее виды. Единицы совокупности и классификация их признаков.

Статистическая совокупность – совокупность однородных по какому-либо признаку предметов, ограниченных пространством и временем. Совокупность называется однородной, если один или несколько изучаемых существенных признаков ее объектов являются общими для всех единиц. Совокупность, в которую входят явления разного типа, считается разнородной. Пример СС - множество студентов некоторого вуза, обучающихся на 2-ом курсе дневного отделения. Данное множество является качественно однородным, так как объединяет молодых людей, обучающихся в одном и том же вузе на 2-ом курсе дневного отделения. В то же время элементы данного множества - студенты отличаются друг от друга успеваемостью, способностями, состоянием здоровья и т.п. Единица совокупности (элемент) - частный случай проявления изучаемой закономерности; это первичный элемент статистической совокупности, являющийся носителем признаков, подлежащих регистрации и основой ведущегося при обследовании счета. Признак - это свойство, характеристика единицы статистической совокупности. Например, единица статистической совокупности - «студент» имеет следующие признаки: фамилия, имя, отчество, возраст, оценки по предметам, посещаемость занятий и т.д Чем более однороднее совокупность, тем больше общих признаков имеют ее единицы и меньше варьируют их значения.

Среднее есть абстрактная типическая характеристика всей совокупности. Оно уничтожает, погашает, сглаживает случайные и неслучайные колебания, влияние индиви­дуальных особенностей и позволяет представить в одной величине, некоторую общую характеристику реальной совокупности единиц. Основное условие научного использования средних заключается в том, чтобы каждое среднее характеризовало такую совокупность единиц, которая в существенном отношении, и в первую очередь в отношении осредняемых значений признака, была бы качественно однородной. Среди всего многообразия средних практически наибо­лее часто используемой считается среднее арифметическое.

Среднее арифметическое. Среднее арифметическое есть частное от деления суммы всех значений признака на их число. Обознача­ется оно х. Формула для вычисления имеет вид

По следующим данным вычислим среднее число газет, читаемых ежедневно индивидами в выборке, из 10 человек:

Формула (1) для сгруппированных данных преобразуется в следующую:

где n t - частота для i -го значения признака.

Если находят среднюю для интервального ряда.распределения, то в качестве значения признака для каждого интервала условно принимают его середину.

Процедуру вычисления среднего по сгруппированным данным удобно выполнять по следующей схеме (табл. 3).

Существует ряд упрощенных приемов вычисления средних. На с. 163 как промежуточный этап рассмотрено вычисление среднего методом отсчета от условного нуля.

Пример. Вышеприведенные данные о количестве прочитанных газет (см. с. 159) сгруппируем следующим образом:

Медиана. Медианой называется значение признака у той еди­ницы совокупности, которая расположена в середине ряда частот­ного распределения.

Если в ряду четное число членов (2k), то медиана равна средне­му арифметическому из двух серединных значений признака. При нечетном числе членов (2k+ 1) медианным будет значение призна­ка у (k + 1) объекта.

Предположим, что в выборке из 10 человек респонденты проранжированы по стажу работы на данном предприятии:

Серединные ранги 5 и 6, поэтому медиана равна

В интервальном ряду с различными значениями частот вычисление медианы распадается на два этапа: сначала находят медиан­ный интервал, которому соответствует первая из накопленных ча­стот, превышающая половину всего объема совокупности, а затем находят значение медианы по формуле

где Х0 - начало (нижняя граница) медианного интервала; d - ве­личина медианного интервала; n = Sn t - сумма частот (относитель­ных частот) интервалов; n н - частота (относительная), накоплен­ная до медианного интервала; n мe - частота (относительная) меди­анного интервала.


Проведем вычисление по данным табл. 2, где в нижней строке приведены накопленные относительные частоты. Первая из них, превышающая половину совокупности (100/2 = 50%), равна 57,9%. Следовательно, медиана принадлежит интервалу 3-4 года. По­этому

Таким образом, для данной выборки медиана, равная 3,7 года, показывает, что 50% семей имеют соотношение возрастов, меньшее этой величины, а другие 50%-большее. Медиана может быть легко определена графически по кумуляте распределения (см. рис. 3).

Медиана может быть применена для дискретных переменных, хотя дробные значения часто не имеют непосредственной содержа­тельной интерпретации.

По данным распределения рабочих по тарифным разрядам см. с. 156) вычислим медиану этого распределения, используя приведенную выше формулу 1 8 . Получим

Узнали, что 50% рабочих имеют разряд, меньший 3,1, и 50%-больший.

Медиана, как уже отмечалось, делит упорядоченный вариацион­ный ряд на две равные по численности группы.

Наряду с медианой можно рассматривать величины, называемые квантилями, которые делят ряд распределения на 4 равные части, на 10 и т. д.

Квантили, которые делят ряд на 4 равные по объему совокупно­сти, называются квартилями. Различают нижний Q1/4 и верхний квартили (рис. 6). Величина Q 1/2 является медианой. Вычисле­ние квартилей совершенно аналогично вычислению медианы:

где х 0 - минимальная граница интервала, содержащего нижний (верхний) квартиль; n н - частота (относительная частота), накоп­ленная до квартального интервала; n Q - частота (относительная частота) квартального интервала; d - величина квартального ин­тервала.

Процентили делят множество наблюдений на 100 частей с рав­ным числом наблюдений в каждой. Децили делят множество наблю­дений на десять равных частей. Квантили легко вычисляются по распределению накопленных частот (по кумуляте).

Мода. Модой в статистике называется наиболее часто встречаю­щееся значение признака, т. е. значение, с которым наиболее веро­ятно можно встретиться в серии зарегистрированных наблюдений. В дискретном ряду мода (Мо) - это значение с наибольшей частотой.

В интервальном ряду (с равными интервалами) модальным яв­ляется класс с наибольшим числом наблюдений. Значение моды находится в его пределах и вычисляется по формуле

где х 0 - нижняя граница модального интервала; d - величина ин­тервала; n- - частота интервала, предшествующего модальному; n Мо - частота модального класса; n + - частота интервала, следую­щего за модальным.

В совокупностях, в которых может быть произведена лишь опе­рация классификации объектов по какому-нибудь качественному признаку, вычисление моды является единственный способом ука­зать некий центр тяжести совокупности.

К недостаткам моды следует отнести следующие: невозможность совершать над ней алгебраические действия; зависимость ее величи­ны от интервала группировки; возможность существования в ряду распределения нескольких модальных значений признака (см., например, рис. 4, в).

Сравнение средних . Целесообразность использования того или иного типа средней величины зависит по крайней мере от следующих условий: цели усреднения, вида распределения, уровня измерения признака, вычислительных соображений. Цель усреднения свя­зана с содержательной трактовкой рассматриваемой задачи. Однако форма распределения может существенно усложнить исследование средних. Если для симметричного распределения (см. рис. 4, а) мода, медиана и среднее арифметическое тождественны, то для асимметричного распределения это не так. На выбор средней мо­жет повлиять и вид распределения. Например, для ряда с откры­тыми конечными интервалами нельзя вычислять среднее арифмети­ческое, но если распределение близко к симметричному, можно под­считать тождественную ему в этом случае медиану.

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

Информатика и математика - Теоретические материалы для первого коллоквиума

1. Предмет математической статистики, её основные разделы. Понятие о статистическом распределении. Нормальное распределение. В каких условиях случайная величина распределена нормально?

Статистика – наука, узучающая совокупн. масс. явл-я с целью выявления закономерн. и изуч-я их с помощью обобщенных показателей.

Все методы математической статистики можно отнести к двум основным ее разделам: теории статистического оценивания параметров и теории проверки статистических гипотез .

Разделы :

1. дескриптивная статистика

2. выборочный метод, доверительные интервалы

3. корреляционный анализ

4. регрессионный анализ

5. анализ качественных признаков

6. многомерный статистический анализ:

а) кластерный

б) факторный

7. анализ временных рядов

8. дифференциальные уравнения

9. математическое моделирование исторических процессов

Распределение:

Теоретическое (бесконечно много объектов и они ведут себя идеально)

Эмпирическое (реальные данные, которые можно выстроить в гистограмму)

Нормальное распределение – когда характер распределения влияют много факторов, и ни один из них не является определяющим. Особенно часто используется на практике.


2. Нормальное распределение можно изобразить графически в виде симметричной одновершинной кривой, напоминающей по форме колокол. Высота (ордината) каждой точки этой кривой показывает, как часто встречается соответствующее значение. Дескриптивная статистика. Средние значения - среднее арифметическое, медиана, мода. В каких ситуациях эти три меры дают близкие значения, а в каких они сильно различаются?

Дескриптивная статистика - Это описательная статистика.

среднее арифметическое, медиана, мода – меры среднего – коэф-ты, которые могут охарактеризовать совокупность объектов

· среднее (арифметическое) значение ‑ сумма всех значений, отнесенная к общему числу наблюдений (принятые обозначения: Mean или ), т.е. средним арифметическим значением признака называется величина

где - значение признака у i -го объекта, n - число объектов в совокупности.

· мода – наиболее часто встречающееся значение переменной (M)

· медиана – среднее по порядку значение (принятые обозначения: Median, m). Медиана - это "серединное" значение признака в том смысле, что у половины объектов совокупности значения этого признака меньше, а у другой половины - больше медианы. Приближенно вычислить медиану можно, упорядочив все значения признака по возрастанию (убыванию) и найдя число в этом вариационном ряду, которое либо имеет номер (n +1)/2 - в случае нечетного n , либо находится посередине между числами с номерами n /2 и (n +1)/2 - в случае четного n .

Не все из перечисленных характеристик можно вычислять для качественных признаков. Если признак качественный и номинальный, то для него можно найти только моду (ее значением будет название наиболее часто встречающейся категории номинального признака). Если признак ранговый, то кроме моды для него можно найти еще и медиану. Среднее арифметическое значение можно вычислять только для количественных признаков.

В случае количественных данных все характеристики среднего уровня измеряются в тех же единицах, что и сам исходный признак.

Значения коэф-тов совпадают, если график распределения симметричен.


3. Показатели неоднородности - дисперсия, среднее квадратическое (стандартное) отклонение, коэффициент вариации. В каких единицах они измеряются? Зачем вводится понятие коэффициента вариации?

· среднее квадратическое или стандартное отклонение ‑ мера разброса значений признака около среднего арифметического значения (принятые обозначения: Std.Dev. (standard deviation ), s или s). Величина этого отклонения вычисляется по формуле

.

· дисперсия признака ( s 2 или s 2 )

· коэффициент вариации ‑ отношение стандартного отклонения к среднему арифметическому, выраженное в процентах (обозначается в статистике буквой V ). Коэффициент вычисляется по формуле: .

Все эти меры можно вычислять только для количественных признаков. Все они показывают, насколько сильно варьируют значения признака (а точнее - их отклонения от среднего) в данной совокупности. Чем меньше значение меры разброса, тем ближе значения признака у всех объектов к своему среднему значению, а значит, и друг к другу. Если величина меры разброса равна нулю, значения признака у всех объектов одинаковы.

Наиболее часто используется среднее квадратическое (или стандартное) отклонение s. Оно измеряется, как и среднее арифметическое, в тех же единицах, что и сам исходный признак. При изменении всех значений признака в несколько раз, точно так же изменится и стандартное отклонение, однако если все значения признака увеличить (уменьшить) на некоторую величину, его стандартное отклонение не изменится . Наряду со стандартным отклонением часто пользуются дисперсией (=его квадрату), однако на практике она является менее удобной мерой, т.к. единицы измерения дисперсии не соответствуют единицам измерения.

Смысл коэффициента вариации состоит в том, что он, в отличие от s, измеряет не абсолютную, а относительную меру разброса значений признака в статистической совокупности.

Чем больше V , тем совокупность менее однородна.

Однородная Переходная Неоднородная

V =0 – 30% V =30 – 50% V =50 – 100%

Может быть »100% (слишком неоднородная совокупность).


4. Понятие о выборочном методе. Репрезентативная выборка, методы её формированияю Два вида ошибок выборки. Доверительная вероятность.

Выборка:

Репрезентативная

Случайная

Механическая выборка – сходна со случайной выборкой (кажд. 10й, 20й и т.п.).

Естественная(то, что осталось от ГС с течением времени) выборки.

Репрезентативная выборка – точно отражает свойства генеральной совокупности.

Чтобы выборка правильно отражала основные свойства, присущие генеральной совокупности, она должна быть случайной , т.е. все объекты генеральной совокупности должны иметь равные шансы попасть в выборку

Выборки формируются с помощью спец. методик. Наиболее простым является случайный отбор, например, при помощи обычной жеребьевки (для небольших совокупностей) или с использованием таблиц случайных чисел. Для более обширных, но достаточно однородных совокупностей используется механический отбор (применявшийся еще в земской статистике). Для неоднородных совокупностей с определенной структурой чаще применяется типический отбор. Существуют и другие методы, в том числе - комбинации разных способов отбора на нескольких этапах построения выборочной совокупности.

В выборочных результатах всегда присутствуют ошибки. Эти ошибки можно разделить на два класса: случайные и систематические. К первым относятся случайные отклонения выборочных характеристик от генеральных, обусловленные самой природой выборочного метода. Величина случайной ошибки поддается вычислению (оценке). Систематические ошибки, наоборот, не носят случайного характера; они связаны с отклонением структуры выборки от реальной структуры генеральной совокупности. Систематические ошибки появляются тогда, когда нарушается основное правило случайного отбора - обеспечение для всех объектов равных шансов поапсть в выборку. Ошибки этого рода статистика не умеет оценивать.

Основными источниками систематических ошибок являются: а) неадекватность сформированной выборки задачам исследования; б) незнание характера распределения в генеральной совокупности и, как следствие, нарушение в выборке структуры генеральной совокупности; в) сознательный отбор наиболее удобных и выигрышных элементов генеральной совокупности.

Доверительная вероятность –


5. Доверительная вероятность. Средняя (стандартная) и предельная ошибки выборки. Доверительный интервал для оценки среднего значения в генеральной совокупности. Проверка гипотезы о статистической значимости различия двух выборочных средних.

Доверительный интервал - тот значений рассчитываемого коэф-та, в к-й, мы считаем,должно попасть это значение для ген. Совокуп-ти.

Доверительная вероятность – вероятность того, что значение рассчитываемого коэф-та для ген. Совокупности попадет в доверительный интервал. Чеи больше ДВ, тем больше ДИ.

Неизбежный разброс выборочных средних вокруг генеральной средней (т.е. стандартное отклонение выборочных средних) называется стандартной ошибкой выборки m , которая выражается формулой (s - среднее квадратическое отклонение, n - объем выборки). стандартная ошибка выборки тем меньше, чем меньше величина s (которая характеризует разброс значений признака) и чем больше объем выборки n .

Если выборочный метод используется для работы с неколичественными данными, то роль среднего арифметического значения в совокупности играет доля или частота q признака. Доля вычисляется как отношение числа объектов, обладающих данным признаком (), к числу объектов во всей совокупности: . Роль меры разброса играет величина .

В этом случае стандарная ошибка выборки m вычисляется по формуле:

Точность и надежность оценки параметров генеральной совокупности по выборке находятся в обратной зависимости: чем больше точность (т.е. чем меньше предельная ошибка и чем уже доверительный интервал), тем меньше надежность такой оценки (степень уверенности). И наоборот - чем ниже точность оценки, тем выше ее надежность. Часто доверительный интервал строят для надежности 95%, соответственно предельная ошибка выборки обычно равна удвоенной средней ошибке m ..

Доверительный интервал для оценки среднего значения в генеральной совокупности:

X (г.с.) = x (выб.) +-Δ = x (выб.) +- = X (выб.) +- σ(г.с.)/√ n

Критерий для разности средних значений

Часто возникает задача сравнения двух выборочных средних с целью проверки гипотезы о том, что эти выборки получены из одной и той же генеральной совокупности, а реальные расхождения в значениях выборочных средних объясняются случайностями выборок.

Испытуемую гипотезу можно сформулировать следующим образом: различие между выборочными средними случайно, т.е. генеральные средние в обоих случаях равны. В качестве статистической характеристики снова используется величина t , предсталяющая собой разность выборочных средних, деленную на усредненную стандартную ошибку среднего по обеим выборкам.

Фактическое значение статистической характеристики сравнивается с критическим значением, соответсвующим выбранному уровню значимости. Если фактическое значение больше, чем критическое, испытуемая гипотеза отклоняется, т.е. различие между средними считается значимым (существенным).


7. Корреляционная связь. Линейный коэффициент корреляции, его формула, пределы его значений. Коэффициент детерминации, его содержательный смысл. Понятие о статистической значимости коеффициента корреляции.

Коэффициент корреляции показывает, насколько тесно две переменных связаны между собой .

Коэффициент корреляции r принимает значения в диапазоне от -1 до +1. Если r = 1, то между двумя переменными существует функциональная положительная линейная связь, т.е. на диаграмме рассеяния соответствующие точки лежат на одной прямой с положительным наклоном. Если r = -1, то между двумя переменными существует функциональная отрицательная зависимость. Если r = 0, то рассматриваемые переменные линейно независимы , т.е. на диаграмме рассеяния облако точек "вытянуто по горизонтали".

Уравнение регрессии и коэффициент корреляции целесообразно вычислять лишь в том случае, когда зависимость между переменными может хотя бы приближенно считаться линейной. В противном случае результаты могут быть совершенно неверными, в частности коэффициент корреляции может оказаться близким к нулю при наличии сильной взаимосвязи. В особенности это характерно для случаев, когда зависимость имеет явно нелинейный характер (например, зависимость между переменными приблизительно описывается синусоидой или параболой). Во многих случаях эту проблему можно обойти, преобразовав исходные переменные. Однако, чтобы догадаться о необходимости подобного преобразования, т.е. для того чтобы узнать, что данные могут содержать сложные формы зависимости, их желательно “увидеть”. Именно поэтому исследование взаимосвязей между количественными переменными обычно должно включать просмотр диаграмм рассеяния.

Коэффициенты корреляции можно вычислять и без предварительного построения линии регрессии. В этом случае вопрос о интерпретации признаков как результативных и факторных, т.е. зависимых и независимых, не ставится, а корреляции понимается как согласованность или синхронность одновременного изменения значений признаков при переходе от объекта к объекту.

Если объекты характеризуются целым набором количественных признаков, можно сразу построить т.н. матрицу корреляции, т.е. квадратную таблицу, число строк и столбцов которой равно числу признаков, а на пересечении каждых строки и столбца стоит коэффициент корреляции соответствующей пары признаков.

Коэффициент корреляции не имеет содержательной интерпретации. Однако его квадрат, называемый коэффициентом детерминации (R 2 ), имеет.

коэффициентом детерминации (R 2) – это показатель того, насколько изменения зависимого признака объясняются изменениями независимого. Более точно, это доля дисперсии независимого признака, объясняемая влиянием зависимого .

Если две переменные функционально линейно зависимы (точки на диаграмме рассеяния лежат на одной прямой), то можно сказать, что изменение переменной y полностью объясняется изменением переменной x, а это как раз тот случай, когда коэффициент детерминации равен единице (при этом коэффициент корреляции может быть равен как 1, так и -1). Если две переменные линейно независимы (метод наименьших квадратов дает горизонтальную прямую), то переменная y своими вариациями никоим образом "не обязана" переменной x – в этом случае коэффициент детерминации равен нулю. В промежуточных случаях коэффициент детерминации указывает, какая часть изменений переменной y объясняется изменением переменной x (иногда удобно представлять эту величину в процентах).


8. Парная и множественная линейная регрессия. Коэффициент множественной корреляции. Содержательный смысл коэффициента регрессии, его значимость, понятие о t -статистике. Содержательный смысл коэффициента детерминации R 2.

Регрессионный анализ - Статистический метод, позволяющий строить объясняющие модели на основе взаимодействия признаков.

Самым простым случаем взаимосвязи является парная взаимосвязь , т.е. связь между двумя признаками. При этом предполагается, что взаимосвязь двух переменных носит, как правило, причинный характер т.е. одна из них зависит от другой. Первая (зависимая) называется в регрессионном анализе результирующей, вторая (независимая) - факторной . Следует заметить, что не всегда можно однозначно определить, какая из двух переменных является независимой, а какая - зависимой. Часто связь может рассматриваться как двунаправленная.

Уравнение парной регрессии : y = kx + b .

Чаще всего на зависимую переменную действуют сразу несколько факторов, среди которых трудно выделить единственный или главный Так, к примеру, доход предприятия зависит одновременно от двух факторов производства - числа рабочих и энерговооруженности. Причем оба этих фактора сами не являются независимыми друг от друга.

Уравнение множественной регрессии : y = k 1 · x 1 + k 2 · x 2 + … + b,

где x 1 , x 2 , . . . – независимые переменные, от которых в той или иной степени зависит исследуемая (результирующая) переменная y;

k 1 , k 2 . . . – коэффициенты при соответствующих переменных (коэффициенты регрессии ), показывающие, насколько изменится значение результирующей переменной при изменении отдельной независимой переменной на единицу.

Уравнение множественной регрессии задает регрессионную модель , объясняющую поведение зависимой переменной. Никакая регрессионная модель не в состоянии указать, какая переменная является зависимой (следствием), а какие – независимыми (причинами).

R – множественный коэф. корреляции, измеряет совокупность воздействия независимых признаков, тесноту связи результирующего признака со всей совокупностью независимых признаков, выраженных в %.

Показывает какова доля учтенных признаков в отделении результата, т.е. на сколько % вариация признака у объясняется вариациями учтенных признаков Х1, Х2, Х3.

T -статистика показывает уровень стат. значимости кажд. ккоэф-та регресии, т.е. его устойчивость по отношению к выборке.

T = b / Δb

Статистически значимыми явл-ся t >2. Чем больше коэф-т, тем лучше.

через R ² мы делаем заключение о том, на сколько % учтенные признаки объясняют результат.


9.Методы многомерного статистического анализа. Кластер-анализ. Понятие об иерархическом методе и о методе К-средних. Многомерная классификация с использованием нечетких множеств.

МСА :

Кластерный анализ

Факторный анализ

Многомерное шкалирование

Кластерный анализ – объединение объектов в группу с единой целью (признаков много).

Способы кластерного анализа:

1. иерархический (дерево иерархического анализа):

основная идея иерархического метода заключается в последовательном объединении группируемых объектов - сначала самых близких, а затем все более удаленных друг от друга. Процедура построения классификации состоит из последовательных шагов, на каждом из которых производится объединение двух ближайших групп объектов (кластеров ).

2. метод К-средних .

Требует заранее заданных классов (кластеров). Подчеркивает внутриклассовую дисперсию. основан на гипотезе о наиболее вероятном количестве классов. Задачей метода является построение заданного числа кластеров, которые должны максимально отличаться друг от друга.

Процедура классификации начинается с построения заданного числа кластеров, полученных путем случайной группировки объектов. Каждый кластер должен состоять из максимально "похожих" объектов, причем сами кластеры должны быть максимально "непохожими" друг на друга.

Результаты этого метода позволяют получить центры всех классов (а также и другие параметры дескриптивной статистики) по каждому из исходных признаков, а также увидеть графическое представление о том, насколько и по каким параметрам различаются полученные классы.

Если рез-ты классификаций, полученные разными методами совпадают, то это подтверждает реальн. Сущ-е групп (надежность, достоверность).


10. Методы многомерного статистического анализа. Факторный анализ, цели его использования. Понятие о факторных весах, пределы их значений; доля суммарной дисперсии, объясняемой факторами.

Многомерный статистический анализ. Его цель: построение упрощенного укрупненного ряда объектов.

МСА :

Кластерный анализ

Факторный анализ

Многомерное шкалирование

В основе факторного анализа лежит идея о том, что за сложными взаимосвязями явно заданных признаков стоит относительно более простая структура, отражающая наиболее существенные черты изучаемого явления, а "внешние" признаки являются функциями скрытых общих факторов, определяющих эту структуру.

Цель: переход от большего числа признаков к небольшому числу факторов.

в факторном анализе все величины, входящие в факторную модель, стандартизированы, т.е. являются безразмерными величинами со средним арифметическим значением 0 и средним квадратическим отклонением 1.

Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору . Это число в интервале от -1 до 1. Чем дальше от 0, тем более сильная связь. Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору. Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором. Факторы являются стандартизованными величинами, не могут быть = нулю. Факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. что она ниже средней.

Таблица факторных весов имеет n строк по числу объектов и k столбцов по числу общих факторов. Положение объектов на оси каждого фактора показывает, с одной стороны, тот порядок, в котором они ранжированы по этому фактору, а с другой стороны, равномерность или же неравномерность в их расположении, наличие скоплений точек, изображающих объекты, что дает возможность визуально выделять более или менее однородные группы.


11. Виды качественных признаков. Номинальные признаки, примеры из исторических источников. Таблица сопряженности. Коэффициент связи номинальных признаков, пределы его значений.

Номинальные данные представлены категориями, для которых порядок абсолютно не важен. Для них не определен никакой другой способ сравнения, кроме как на буквальное совпадение/несовпадение.

Примеры номинальных переменных:

· Национальность: англичанин, белорус, немец, русский, японец и пр.

· Род занятий: служащий, врач, военный, учитель и т.д.

· Профиль образования: гуманитарное, техническое, медицинское, юридическое и т.д.

Если в случае с уровнем образования мы еще могли сравнивать людей в терминах "лучше-хуже" или "выше-ниже", то теперь мы лишены даже этой возможности; единственный корректный способ сравнения ‑ это говорить, что данные персоналии "все являются историками", или "все не являются юристами".

Таблицы сопряженности

Таблицей сопряженности называется прямоугольная таблица, по строкам которой указываются категории одного признака (например, разные социальные группы), а по столбцам - категории другого (например, партийная принадлежность). Каждый объект совокупности попадает в какую-либо из клеток этой таблицы в соответствии с тем, в какую категорию он попадает по каждому из двух признаков. Таким образом, в клетках таблицы стоят числа, представляющие собой частоты совместной встречаемости категорий двух признаков (число людей, принадлежащих конкретной социальной группе и входящих в определенную партию). В зависимости от характера распределения этих частот внутри таблицы можно судить о том, существует ли связь между признаками. Что означает связь между социальным статусом и партийной принадлежностью? В данном случае о наличии связи свидетельствовало бы наличии определенных политических пристрастий у членов разных социальных групп. Формально говоря, эта связь понимается как более частая (или наоборот, редкая) совместная встречаемость отдельных комбинаций категорий по сравнению с ожидаемой встречаемостью - ситуацией чисто случайного попадания объектов туда (например, более высокая доля крестьян в партии трудовиков, а дворян - в партии кадетов, чем доли этих социальных групп во всей совокупности депутатов Думы).


12. Виды качественных признаков. Ранговые признаки, примеры из исторических источников. В каких пределах находятся значения коэффициента ранговой корреляции? Какие коэффициенты следует использовать для оценки связи рангового и номинального признаков?

качественные (или категориальные) данные делятся на два типа: ранговые и номинальные.

Ранговые данные представлены категориями, для которых можно указать порядок, т.е. категории сравнимы по принципу "больше-меньше" или "лучше-хуже".

Примеры ранговых переменных:

· Оценки на экзаменах имеют явно выраженную ранговую природу и выражаются категориями типа: "отлично", "хорошо", "удовлетворительно" и т.д.

· Уровень образования может быть представлен как набор категорий: "высшее", "среднее" и т.п.

Несомненно, мы можем ввести ранговую шкалу и с ее помощью упорядочить всех людей, для которых мы знаем их уровень образования или балл на экзамене. Однако, верно ли, что оценка "хорошо" на столько же хуже, чем "отлично", насколько оценка "удовлетворительно" хуже, чем "хорошо"? Несмотря на то, что формально, в случае с оценками, можно получить разницу в баллах, вряд ли корректно измерять расстояние от "отличника" до "хорошиста" пользуясь теми же правилами, что для расстояния от Москвы до Петербурга. В случае с уровнем образования особенно отчетливо видно, что простые вычисления невозможны, поскольку не существует единого правила вычитания "среднего" уровня образования из "высшего", даже, если мы присвоим высшему образованию код "3", а среднему – код "2".

Своеобразие качественных данных не означает, что их нельзя анализировать с помощью математических и статистических методов.

Ряд объектов, упорядоченных в соответствии со степенью проявления некоторого свойства, называют ранжированным, каждому числу такого ряда присваивается ранг .

Меры взаимосвязи между парой признаков, каждый из которых ранжирует изучаемую совокупность объектов, называются в статистике коэффициентами ранговой корреляции .

Эти коэффициенты строятся на основе следующих трех свойств:

· если ранжированные ряды по обоим признакам полностью совпадают (т.е. каждый объект занимает одно и то же место в обоих рядах), то коэффициент ранговой корреляции должен быть равен +1, что означает полную положительную корреляцию:

· если объекты в одном ряду расположены в обратном порядке по сравнению со вторым, коэффициент равен -1, что означает полную отрицательную корреляцию;

· в остальных ситуациях значения коэффициента заключены в интервале [-1, +1]; возрастание модуля коэффициента от 0 до 1 характеризует увеличение соответствия между двумя ранжированными рядами.

Указанными свойствами обладают коэффициенты ранговой корреляции Спирмена r и Кедалла t .

Коэффициент Кедалла дает более осторожную оценку корреляции, чем коэффициент Спирмена (числовое значение t всегда меньше, чем r ).

Коэффициенты взаимосвязи качественных признаков

Для оценки связи качественных признаков необходим коэффициент, к-й имел бы определенный максимум в случае максимальной связи и позволял бы сравнивать между собой разные таблицы по силе связи между признаками. В данном случае нам подходит коэффициент Крамера V .

Базируясь на значении критерия хи-квадрат, коэффициент Крамера позволяет измерять силу связи между двумя категоризованными переменными - измерить ее числом, принимающим значения от 0 до 1, т.е. от полного отсутствия связи до максимальной сильной связи. Коэффициент позволяет сравнить зависимости разных признаков, с тем, чтобы выявить более и менее сильные связи.


13. Математическое моделирование исторических процессов и явлений. Определение понятия «модель». Три типа моделей, примеры их использования в исторических исследованиях.

14. Дифференциальные уравнения как основной инструмент построения математических моделей теоретического типа. Их особенности в сравнении с моделями иммитационного и статистического типа. Пример такой модели.