Собственные векторы матрицы онлайн. Собственные значения (числа) и собственные векторы.Примеры решений

Собственный вектор квадратной матрицы - это такой вектор, который при умножении на заданную матрицу дает в результате коллинеарный вектор. Простыми словами, при умножении матрицы на собственный вектор последний остается тем же самым, но умноженным на некоторое число.

Определение

Собственный вектор - это ненулевой вектор V, который при умножении на квадратную матрицу Mпревращается в самого себя, увеличенного на некоторое число λ. В алгебраической записи это выглядит как:

M × V = λ × V,

где λ - собственное число матрицы M.

Рассмотрим числовой пример. Для удобства записи числа в матрице будет отделять точкой с запятой. Пусть у нас есть матрица:

  • M = 0; 4;
  • 6; 10.

Умножим ее на вектор-столбец:

  • V = -2;

При умножении матрицы на вектор-столбец мы получаем также вектор-столбец. Строгим математическим языком формула умножения матрицы 2 × 2 на вектор-столбец будет выглядеть так:

  • M × V = M11 × V11 + M12 × V21;
  • M21 × V11 + M22 × V21.

М11 означает элемент матрицы M, стоящий в первой строке и первом столбце, а M22 - элемент, расположенные во второй строке и втором столбце. Для нашей матрицы эти элементы равны M11 = 0, М12 = 4, М21 = 6, М22 10. Для вектора-столбца эти значения равны V11 = –2, V21 = 1. Согласно этой формуле мы получим следующий результат произведения квадратной матрицы на вектор:

  • M × V = 0 × (-2) + (4) × (1) = 4;
  • 6 × (-2) + 10 × (1) = -2.

Для удобства запишем вектор столбец в строку. Итак, мы умножили квадратную матрицу на вектор (-2; 1), в результате чего получили вектор (4; -2). Очевидно, что это тот же вектор, умноженный на λ = -2. Лямбда в данном случае обозначает собственное число матрицы.

Собственный вектор матрицы - это коллинеарный вектор, то есть объект, который не изменяет своего положения в пространстве при умножении его на матрицу. Понятие коллинеарности в векторной алгебре сходно с термином параллельности в геометрии. В геометрической интерпретации коллинеарные вектора - это параллельные направленные отрезки разной длины. Еще со времен Евклида мы знаем, что у одной прямой существует бесконечное количество параллельных ей прямых, поэтому логично предположить, что каждая матрица обладает бесконечным количеством собственных векторов.

Из предыдущего примера видно, что собственными векторами могут быть и (-8; 4), и (16; -8), и (32, -16). Все это коллинеарные вектора, соответствующие собственному числу λ = -2. При умножении исходной матрицы на эти вектора мы все так же будет получать в результате вектор, который отличается от исходного в 2 раза. Именно поэтому при решении задач на поиск собственного вектора требуется найти только линейно независимые векторные объекты. Чаще всего для матрицы размером n × n существует n-ное количество собственных векторов. Наш калькулятор заточен под анализ квадратных матриц второго порядка, поэтому практически всегда в результате будут найдены два собственных вектора, за исключением случаев, когда они совпадают.

В примере выше мы заранее знали собственный вектор исходной матрицы и наглядно определили число лямбда. Однако на практике все происходит наоборот: в начале находится собственные числа и только затем собственные вектора.

Алгоритм решения

Давайте вновь рассмотрим исходную матрицу M и попробуем найти оба ее собственных вектора. Итак, матрица выглядит как:

  • M = 0; 4;
  • 6; 10.

Для начала нам необходимо определить собственное число λ, для чего требуется вычислить детерминант следующей матрицы:

  • (0 − λ); 4;
  • 6; (10 − λ).

Данная матрица получена путем вычитания неизвестной λ из элементов на главной диагонали. Детерминант определяется по стандартной формуле:

  • detA = M11 × M21 − M12 × M22
  • detA = (0 − λ) × (10 − λ) − 24

Так как наш вектор должен быть не нулевым, полученное уравнение принимаем как линейно зависимое и приравниваем наш детерминант detA к нулю.

(0 − λ) × (10 − λ) − 24 = 0

Раскроем скобки и получим характеристическое уравнение матрицы:

λ 2 − 10λ ­− 24 = 0

Это стандартное квадратное уравнение, которое требуется решить через дискриминант.

D = b 2 − 4ac = (-10) × 2 − 4 × (-1) × 24 = 100 + 96 = 196

Корень из дискриминанта равен sqrt(D) = 14, следовательно, λ1 = -2, λ2 = 12. Теперь для каждого значения лямбда требуется найти собственный вектор. Выразим коэффициенты системы для λ = -2.

  • М − λ × E = 2; 4;
  • 6; 12.

В данной формуле E - это единичная матрица. На основании полученной матрицы составим систему линейных уравнений:

2x + 4y = 6x + 12y,

где x и y - элементы собственного вектора.

Соберем все иксы слева, а все игреки справа. Очевидно, что - 4x = 8y. Разделим выражение на - 4 и получим x = –2y. Теперь мы можем определить первый собственный вектор матрицы, приняв любые значения неизвестных (вспоминаем про бесконечность линейно зависимых собственных векторов). Примем y = 1, тогда x = –2. Следовательно, первый собственный вектор выглядит как V1 = (–2; 1). Вернитесь в начало статьи. Именно на этот векторный объект мы умножали матрицу для демонстрации понятия собственного вектора.

Теперь отыщем собственный вектор для λ = 12.

  • М - λ × E = -12; 4
  • 6; -2.

Составим такую же систему линейных уравнений;

  • -12x + 4y = 6x − 2y
  • -18x = -6y
  • 3x = y.

Теперь примем x = 1, следовательно, y = 3. Таким образом, второй собственный вектор выглядит как V2 = (1; 3). При умножении исходной матрицы на данный вектор, в результате всегда будет такой же вектор, умноженный на 12. На этом алгоритм решения заканчивается. Теперь вы знаете, как вручную определить собственный вектор матрицы.

  • определитель;
  • след, то есть сумму элементов на главной диагонали;
  • ранг, то есть максимальное количество линейно независимых строк/столбцов.

Программа действует по выше приведенному алгоритму, максимально сокращая процесс решения. Важно указать, что в программе лямбда обозначена литерой «c». Давайте рассмотрим численный пример.

Пример работы программы

Попробуем определить собственные вектора для следующей матрицы:

  • M = 5; 13;
  • 4; 14.

Введем эти значения в ячейки калькулятора и получим ответ в следующем виде:

  • Ранг матрицы: 2;
  • Детерминант матрицы: 18;
  • След матрицы: 19;
  • Расчет собственного вектора: c 2 − 19,00c + 18,00 (характеристическое уравнение);
  • Расчет собственного вектора: 18 (первое значение лямбда);
  • Расчет собственного вектора: 1 (второе значение лямбда);
  • Система уравнений вектора 1: -13x1 + 13y1 = 4x1 − 4y1;
  • Система уравнений вектора 2: 4x1 + 13y1 = 4x1 + 13y1;
  • Собственный вектор 1: (1; 1);
  • Собственный вектор 2: (-3,25; 1).

Таким образом, мы получили два линейно независимых собственных вектора.

Заключение

Линейная алгебра и аналитическая геометрия - стандартные предметы для любого первокурсника технической специальности. Большое количество векторов и матриц приводит в ужас, а в столь громоздких вычислениях легко сделать ошибку. Наша программа позволит студентам проверить свои выкладки или автоматически решит задачу на поиск собственного вектора. В нашем каталоге есть и другие калькуляторы по линейной алгебре, используйте их в своей учебе или работе.

Собственные значения (числа) и собственные векторы.
Примеры решений

Будь собой


Из обоих уравнений следует, что .

Положим , тогда: .

В результате: – второй собственный вектор.

Повторим важные моменты решения:

– полученная система непременно имеет общее решение (уравнения линейно зависимы);

– «игрек» подбираем таким образом, чтобы он был целым и первая «иксовая» координата – целой, положительной и как можно меньше.

– проверяем, что частное решение удовлетворяет каждому уравнению системы.

Ответ .

Промежуточных «контрольных точек» было вполне достаточно, поэтому проверка равенств , в принципе, дело излишнее.

В различных источниках информации координаты собственных векторов довольно часто записывают не в столбцы, а в строки, например: (и, если честно, я сам привык записывать их строками) . Такой вариант приемлем, но в свете темы линейных преобразований технически удобнее использовать векторы-столбцы .

Возможно, решение показалась вам очень длинным, но это только потому, что я очень подробно прокомментировал первый пример.

Пример 2

Матрицы

Тренируемся самостоятельно! Примерный образец чистового оформления задачи в конце урока.

Иногда требуется выполнить дополнительное задание, а именно:

записать каноническое разложение матрицы

Что это такое?

Если собственные векторы матрицы образуют базис , то она представима в виде:

Где – матрица составленная из координат собственных векторов, – диагональная матрица с соответствующими собственными числами.

Такое разложение матрицы называют каноническим или диагональным .

Рассмотрим матрицу первого примера. Её собственные векторы линейно независимы (неколлинеарны)и образуют базис. Составим матрицу из их координат:

На главной диагонали матрицы в соответствующем порядке располагаются собственные числа, а остальные элементы равняются нулю:
– ещё раз подчёркиваю важность порядка: «двойка» соответствует 1-му вектору и посему располагается в 1-м столбце, «тройка» – 2-му вектору.

По обычному алгоритму нахождения обратной матрицы либо методом Гаусса-Жордана находим . Нет, это не опечатка! – перед вами редкое, как солнечное затмение событие, когда обратная совпала с исходной матрицей.

Осталось записать каноническое разложение матрицы :

Систему можно решить с помощью элементарных преобразований и в следующих примерах мы прибегнем к данному методу. Но здесь гораздо быстрее срабатывает «школьный» способ. Из 3-го уравнения выразим: – подставим во второе уравнение:

Поскольку первая координата нулевая, то получаем систему , из каждого уравнения которой следует, что .

И снова обратите внимание на обязательное наличие линейной зависимости . Если получается только тривиальное решение , то либо неверно найдено собственное число, либо с ошибкой составлена / решена система.

Компактные координаты даёт значение

Собственный вектор:

И ещё раз – проверяем, что найденное решение удовлетворяет каждому уравнению системы . В последующих пунктах и в последующих задачах рекомендую принять данное пожелание за обязательное правило.

2) Для собственного значения по такому же принципу получаем следующую систему:

Из 2-го уравнения системы выразим: – подставим в третье уравнение:

Поскольку «зетовая» координата равна нулю, то получаем систему , из каждого уравнения которой следует линейная зависимость .

Пусть

Проверяем, что решение удовлетворяет каждому уравнению системы.

Таким образом, собственный вектор: .

3) И, наконец, собственному значению соответствует система:

Второе уравнение выглядит самым простым, поэтому из него выразим и подставим в 1-е и 3-е уравнение:

Всё хорошо – выявилась линейная зависимость , которую подставляем в выражение :

В результате «икс» и «игрек» оказались выражены через «зет»: . На практике не обязательно добиваться именно таких взаимосвязей, в некоторых случаях удобнее выразить и через либо и через . Или даже «паровозиком» – например, «икс» через «игрек», а «игрек» через «зет»

Положим , тогда:

Проверяем, что найденное решение удовлетворяет каждому уравнению системы и записываем третий собственный вектор

Ответ : собственные векторы:

Геометрически эти векторы задают три различных пространственных направления («туда-обратно») , по которым линейное преобразование переводит ненулевые векторы (собственные векторы) в коллинеарные им векторы.

Если бы по условию требовалось найти каноническое разложение , то здесь это возможно, т.к. различным собственным числам соответствуют разные линейно независимые собственные векторы. Составляем матрицу из их координат, диагональную матрицу из соответствующих собственных значений и находим обратную матрицу .

Если же по условию нужно записать матрицу линейного преобразования в базисе из собственных векторов , то ответ даём в виде . Разница есть, и разница существенная! Ибо оная матрица – есть матрица «дэ».

Задача с более простыми вычислениями для самостоятельного решения:

Пример 5

Найти собственные векторы линейного преобразования, заданного матрицей

При нахождении собственных чисел постарайтесь не доводить дело до многочлена 3-й степени. Кроме того, ваши решения систем могут отличаться от моих решений – здесь нет однозначности; и векторы, которые вы найдёте, могут отличаться от векторов образца с точностью до пропорциональности их соответствующих координат. Например, и . Эстетичнее представить ответ в виде , но ничего страшного, если остановитесь и на втором варианте. Однако всему есть разумные пределы, версия смотрится уже не очень хорошо.

Примерный чистовой образец оформления задания в конце урока.

Как решать задачу в случае кратных собственных чисел?

Общий алгоритм остаётся прежним, но здесь есть свои особенности, и некоторые участки решения целесообразно выдержать в более строгом академичном стиле:

Пример 6

Найти собственные числа и собственные векторы

Решение

Конечно же, оприходуем сказочный первый столбец:

И, после разложения квадратного трёхчлена на множители:

В результате получены собственные числа , два из которых кратны.

Найдем собственные векторы:

1) С одиноким солдатом разделаемся по «упрощённой» схеме:

Из последних двух уравнений четко просматривается равенство , которое, очевидно, следует подставить в 1-е уравнение системы:

Лучшей комбинации не найти:
Собственный вектор:

2-3) Теперь снимаем пару часовых. В данном случае может получиться либо два, либо один собственный вектор. Невзирая на кратность корней, подставим значение в определитель , который приносит нам следующую однородную систему линейных уравнений :

Собственные векторы – это в точности векторы
фундаментальной системы решений

Собственно, на протяжении всего урока мы только и занимались тем, что находили векторы фундаментальной системы. Просто до поры до времени данный термин особо не требовался. Кстати, те ловкие студенты, которые в маскхалатах проскочили тему однородных уравнений , будут вынуждены вкурить её сейчас.


Единственное действие состояло в удалении лишних строк. В результате получена матрица «один на три» с формальной «ступенькой» посередине.
– базисная переменная, – свободные переменные. Свободных переменных две, следовательно, векторов фундаментальной системы тоже два .

Выразим базисную переменную через свободные переменные: . Нулевой множитель перед «иксом» позволяет принимать ему совершенно любые значения (что хорошо видно и из системы уравнений).

В контексте данной задачи общее решение удобнее записать не в строку, а в столбец:

Паре соответствует собственный вектор:
Паре соответствует собственный вектор:

Примечание : искушенные читатели могут подобрать данные векторы и устно – просто анализируя систему , но тут нужны некоторые знания: переменных – три, ранг матрицы системы – единица, значит, фундаментальная система решений состоит из 3 – 1 = 2 векторов. Впрочем, найдённые векторы отлично просматриваются и без этих знаний чисто на интуитивном уровне. При этом даже «красивее» запишется третий вектор: . Однако предостерегаю, в другом примере простого подбора может и не оказаться, именно поэтому оговорка предназначена для опытных людей. Кроме того, а почему бы не взять в качестве третьего вектора, скажем, ? Ведь его координаты тоже удовлетворяют каждому уравнение системы, и векторы линейно независимы. Такой вариант, в принципе, годен, но «кривоват», поскольку «другой» вектор представляет собой линейную комбинацию векторов фундаментальной системы.

Ответ : собственные числа: , собственные векторы:

Аналогичный пример для самостоятельного решения:

Пример 7

Найти собственные числа и собственные векторы

Примерный образец чистового оформления в конце урока.

Следует отметить, что и в 6-м и в 7-м примере получается тройка линейно независимых собственных векторов, и поэтому исходная матрица представима в каноническом разложении . Но такая малина бывает далеко не во всех случаях:

Пример 8


Решение : составим и решим характеристическое уравнение:

Определитель раскроем по первому столбцу:

Дальнейшие упрощения проводим согласно рассмотренной методике, избегая многочлена 3-й степени:

– собственные значения.

Найдем собственные векторы:

1) С корнем затруднений не возникает:

Не удивляйтесь, помимо комплекта в ходу также переменные – разницы тут никакой.

Из 3-го уравнения выразим – подставим в 1-е и 2-е уравнения:

Из обоих уравнений следует:

Пусть , тогда:

2-3) Для кратных значений получаем систему .

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

СИСТЕМА ОДНОРОДНЫХ ЛИНЕЙНЫХ УРАВНЕНИЙ

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда Δ ≠ 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Теорема. Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.

Итак, если определитель Δ ≠ 0, то система имеет единственное решение. Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.

Примеры.

СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ МАТРИЦЫ

Пусть задана квадратная матрица , X – некоторая матрица–столбец, высота которой совпадает с порядком матрицы A . .

Во многих задачах приходится рассматривать уравнение относительно X

где λ – некоторое число. Понятно, что при любом λ это уравнение имеет нулевое решение .

Число λ, при котором это уравнение имеет ненулевые решения, называется собственным значением матрицы A , а X при таком λ называется собственным вектором матрицы A .

Найдём собственный вектор матрицы A . Поскольку E X = X , то матричное уравнение можно переписать в виде или . В развёрнутом виде это уравнение можно переписать в виде системы линейных уравнений. Действительно .

И, следовательно,

Итак, получили систему однородных линейных уравнений для определения координат x 1 , x 2 , x 3 вектора X . Чтобы система имела ненулевые решения необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.

Это уравнение 3-ей степени относительно λ. Оно называется характеристическим уравнением матрицы A и служит для определения собственных значений λ.

Каждому собственному значению λ соответствует собственный вектор X , координаты которого определяются из системы при соответствующем значении λ.

Примеры.

ВЕКТОРНАЯ АЛГЕБРА. ПОНЯТИЕ ВЕКТРОРА

При изучении различных разделов физики встречаются величины, которые полностью определяются заданием их численных значений, например, длина, площадь, масса, температура и т.д. Такие величины называются скалярными. Однако, кроме них встречаются и величины, для определения которых, кроме численного значения, необходимо знать также их направление в пространстве, например, сила, действующая на тело, скорость и ускорение тела при его движении в пространстве, напряжённость магнитного поля в данной точке пространства и т.д. Такие величины называются векторными.

Введём строгое определение.

Направленным отрезком назовём отрезок, относительно концов которого известно, какой из них первый, а какой второй.

Вектором называется направленный отрезок, имеющий определённую длину, т.е. это отрезок определённой длины, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец. Если A – начало вектора, B – его конец, то вектор обозначается символом, кроме того, вектор часто обозначается одной буквой . На рисунке вектор обозначается отрезком, а его направление стрелкой.

Модулем или длиной вектора называют длину определяющего его направленного отрезка. Обозначается || или ||.

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают. Он обозначается . Нулевой вектор не имеет определенного направления и модуль его равен нулю ||=0.

Векторы и называются коллинеарными , если они расположены на одной прямой или на параллельных прямых. При этом если векторы и одинаково направлены, будем писать , противоположно .

Векторы, расположенные на прямых, параллельных одной и той же плоскости, называются компланарными .

Два вектора и называются равными , если они коллинеарны, одинаково направлены и равны по длине. В этом случае пишут .

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства.

Например .

ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

  • Умножение вектора на число.

    Произведением вектора на число λ называется новый вектор такой, что:

    Произведение вектора на число λ обозначается .

    Например, есть вектор, направленный в ту же сторону, что и вектор , и имеющий длину, вдвое меньшую, чем вектор .

    Введённая операция обладает следующими свойствами :

  • Сложение векторов.

    Пусть и – два произвольных вектора. Возьмём произвольную точку O и построим вектор . После этого из точки A отложим вектор . Вектор , соединяющий начало первого вектора c концом второго , называется суммой этих векторов и обозначается .

    Сформулированное определение сложения векторов называют правилом параллелограмма , так как ту же самую сумму векторов можно получить следующим образом. Отложим от точки O векторы и . Построим на этих векторах параллелограмм ОАВС . Так как векторы , то вектор , являющийся диагональю параллелограмма, проведённой из вершины O , будет очевидно суммой векторов .

    Легко проверить следующие свойства сложения векторов .

  • Разность векторов.

    Вектор, коллинеарный данному вектору , равный ему по длине и противоположно направленный, называется противоположным вектором для вектора и обозначается . Противоположный вектор можно рассматривать как результат умножения вектора на число λ = –1: .

  • Как вставить математические формулы на сайт?

    Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

    Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

    Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

    Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

    Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

    Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

    Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

    Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

    Определение 9.3. Вектор х называется собственным вектором матрицы А , если найдется такое число λ, что выполняется равенство: Ах = λх , то есть результатом применения к х линейного преобразования, задаваемого матрицей А , является умножение этого вектора на число λ . Само число λ называетсясобственным числом матрицы А .

    Подставив в формулы (9.3) x` j = λx j , получим систему уравнений для определения координат собственного вектора:

    . (9.5)

    Эта линейная однородная система будет иметь нетривиальное решение только в случае, если ее главный определитель равен 0 (правило Крамера). Записав это условие в виде:

    получим уравнение для определения собственных чисел λ , называемое характеристическим уравнением . Кратко его можно представить так:

    | A - λE | = 0, (9.6)

    поскольку в его левой части стоит определитель матрицы А-λЕ . Многочлен относительно λ | A - λE | называется характеристическим многочленом матрицы А.

    Свойства характеристического многочлена:

    1) Характеристический многочлен линейного преобразования не зависит от выбора базиса. Доказательство. (см. (9.4)), но следовательно, . Таким образом, не зависит от выбора базиса. Значит, и |A-λE | не изменяется при переходе к новому базису.

    2) Если матрица А линейного преобразования является симметрической (т.е. а ij =a ji ), то все корни характеристического уравнения (9.6) – действительные числа.

    Свойства собственных чисел и собственных векторов:

    1) Если выбрать базис из собственных векторов х 1 , х 2 , х 3 , соответствующих собственным значениям λ 1 , λ 2 , λ 3 матрицы А , то в этом базисе линейное преобразование А имеет матрицу диагонального вида:

    (9.7) Доказательство этого свойства следует из определения собственных векторов.

    2) Если собственные значения преобразования А различны, то соответствующие им собственные векторы линейно независимы.

    3) Если характеристический многочлен матрицы А имеет три различных корня, то в некотором базисе матрица А имеет диагональный вид.

    Найдем собственные числа и собственные векторы матрицы Составим характеристическое уравнение: (1- λ )(5 - λ )(1 - λ ) + 6 - 9(5 - λ ) - (1 - λ ) - (1 - λ ) = 0, λ ³ - 7λ ² + 36 = 0, λ 1 = -2, λ 2 = 3, λ 3 = 6.

    Найдем координаты собственных векторов, соответствующих каждому найденному значению λ. Из (9.5) следует, что если х (1) ={x 1 ,x 2 ,x 3 } – собственный вектор, соответствующий λ 1 =-2, то

    - совместная, но неопределенная система. Ее решение можно записать в виде х (1) ={a ,0,-a }, где а – любое число. В частности, если потребовать, чтобы |x (1) |=1, х (1) =

    Подставив в систему (9.5) λ 2 =3, получим систему для определения координат второго собственного вектора - x (2) ={y 1 ,y 2 ,y 3 }:

    , откуда х (2) ={b,-b,b } или, при условии |x (2) |=1, x (2) =

    Для λ 3 = 6 найдем собственный вектор x (3) ={z 1 , z 2 , z 3 }:

    , x (3) ={c ,2c,c } или в нормированном варианте

    х (3) = Можно заметить, что х (1) х (2) = ab – ab = 0, x (1) x (3) = ac – ac = 0, x (2) x (3) = bc - 2bc + bc = 0. Таким образом, собственные векторы этой матрицы попарно ортогональны.

    Лекция 10.

    Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

    Определение 10.1. Квадратичной формой действительных переменных х 1 , х 2 ,…,х n называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени.

    Примеры квадратичных форм:

    (n = 2),

    (n = 3). (10.1)

    Напомним данное в прошлой лекции определение симметрической матрицы:

    Определение 10.2. Квадратная матрица называется симметрической , если , то есть если равны элементы матрицы, симметричные относительно главной диагонали.

    Свойства собственных чисел и собственных векторов симметрической матрицы:

    1) Все собственные числа симметрической матрицы действительные.

    Доказательство (для n = 2).

    Пусть матрица А имеет вид: . Составим характеристическое уравнение:

    (10.2) Найдем дискриминант:

    Следовательно, уравнение имеет только действительные корни.

    2) Собственные векторы симметрической матрицы ортогональны.

    Доказательство (для n = 2).

    Координаты собственных векторов и должны удовлетворять уравнениям.