Методы математической статистики. Регрессионный анализ. Уравнение регрессии. Уравнение множественной регрессии

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R 0,998364
R-квадрат 0,99673
Нормированный R-квадрат 0,996321
Стандартная ошибка 0,42405
Наблюдения 10

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

Множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии
Коэффициенты Стандартная ошибка t-статистика
Y-пересечение 2,694545455 0,33176878 8,121757129
Переменная X 1 2,305454545 0,04668634 49,38177965
* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты вывода остатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки
Наблюдение Предсказанное Y Остатки Стандартные остатки
1 9,610909091 -0,610909091 -1,528044662
2 7,305454545 -0,305454545 -0,764022331
3 11,91636364 0,083636364 0,209196591
4 14,22181818 0,778181818 1,946437843
5 16,52727273 0,472727273 1,182415512
6 18,83272727 0,167272727 0,418393181
7 21,13818182 -0,138181818 -0,34562915
8 23,44363636 -0,043636364 -0,109146047
9 25,74909091 -0,149090909 -0,372915662
10 28,05454545 -0,254545455 -0,636685276

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение

В предыдущих заметках предметом анализа часто становилась отдельная числовая переменная, например, доходность взаимных фондов, время загрузки Web-страницы или объем потребления безалкогольных напитков. В настоящей и следующих заметках мы рассмотрим методы предсказания значений числовой переменной в зависимости от значений одной или нескольких других числовых переменных.

Материал будет проиллюстрирован сквозным примером. Прогнозирование объема продаж в магазине одежды. Сеть магазинов уцененной одежды Sunflowers на протяжении 25 лет постоянно расширялась. Однако в настоящее время у компании нет систематического подхода к выбору новых торговых точек. Место, в котором компания собирается открыть новый магазин, определяется на основе субъективных соображений. Критериями выбора являются выгодные условия аренды или представления менеджера об идеальном местоположении магазина. Представьте, что вы - руководитель отдела специальных проектов и планирования. Вам поручили разработать стратегический план открытия новых магазинов. Этот план должен содержать прогноз годового объема продаж во вновь открываемых магазинах. Вы полагаете, что торговая площадь непосредственно связана с объемом выручки, и хотите учесть этот факт в процессе принятия решения. Как разработать статистическую модель, позволяющую прогнозировать годовой объем продаж на основе размера нового магазина?

Как правило, для предсказания значений переменной используется регрессионный анализ. Его цель - разработать статистическую модель, позволяющую предсказывать значения зависимой переменной, или отклика, по значениям, по крайней мере одной, независимой, или объясняющей, переменной. В настоящей заметке мы рассмотрим простую линейную регрессию - статистический метод, позволяющий предсказывать значения зависимой переменной Y по значениям независимой переменной X . В последующих заметках будет описана модель множественной регрессии, предназначенная для предсказания значений независимой переменной Y по значениям нескольких зависимых переменных (Х 1 , Х 2 , …, X k ).

Скачать заметку в формате или , примеры в формате

Виды регрессионных моделей

где ρ 1 – коэффициент автокорреляции; если ρ 1 = 0 (нет автокорреляции), D ≈ 2; если ρ 1 ≈ 1 (положительная автокорреляции), D ≈ 0; если ρ 1 = -1 (отрицательная автокорреляции), D ≈ 4.

На практике применение критерия Дурбина-Уотсона основано на сравнении величины D с критическими теоретическими значениями d L и d U для заданного числа наблюдений n , числа независимых переменных модели k (для простой линейной регрессии k = 1) и уровня значимости α. Если D < d L , гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция); если D > d U , гипотеза не отвергается (то есть автокорреляция отсутствует); если d L < D < d U , нет достаточных оснований для принятия решения. Когда расчётное значение D превышает 2, то с d L и d U сравнивается не сам коэффициент D , а выражение (4 – D ).

Для вычисления статистики Дурбина-Уотсона в Excel обратимся к нижней таблице на рис. 14 Вывод остатка . Числитель в выражении (10) вычисляется с помощью функции =СУММКВРАЗН(массив1;массив2), а знаменатель =СУММКВ(массив) (рис. 16).

Рис. 16. Формулы расчета статистики Дурбина-Уотсона

В нашем примере D = 0,883. Основной вопрос заключается в следующем - какое значение статистики Дурбина-Уотсона следует считать достаточно малым, чтобы сделать вывод о существовании положительной автокорреляции? Необходимо соотнести значение D с критическими значениями (d L и d U ), зависящими от числа наблюдений n и уровня значимости α (рис. 17).

Рис. 17. Критические значения статистики Дурбина-Уотсона (фрагмент таблицы)

Таким образом, в задаче об объеме продаж в магазине, доставляющем товары на дом, существуют одна независимая переменная (k = 1), 15 наблюдений (n = 15) и уровень значимости α = 0,05. Следовательно, d L = 1,08 и d U = 1,36. Поскольку D = 0,883 < d L = 1,08, между остатками существует положительная автокорреляция, метод наименьших квадратов применять нельзя.

Проверка гипотез о наклоне и коэффициенте корреляции

Выше регрессия применялась исключительно для прогнозирования. Для определения коэффициентов регрессии и предсказания значения переменной Y при заданной величине переменной X использовался метод наименьших квадратов. Кроме того, мы рассмотрели среднеквадратичную ошибку оценки и коэффициент смешанной корреляции. Если анализ остатков подтверждает, что условия применимости метода наименьших квадратов не нарушаются, и модель простой линейной регрессии является адекватной, на основе выборочных данных можно утверждать, что между переменными в генеральной совокупности существует линейная зависимость.

Применение t -критерия для наклона. Проверяя, равен ли наклон генеральной совокупности β 1 нулю, можно определить, существует ли статистически значимая зависимость между переменными X и Y . Если эта гипотеза отклоняется, можно утверждать, что между переменными X и Y существует линейная зависимость. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = 0 (нет линейной зависимости), Н1: β 1 ≠ 0 (есть линейная зависимость). По определению t -статистика равна разности между выборочным наклоном и гипотетическим значением наклона генеральной совокупности, деленной на среднеквадратичную ошибку оценки наклона:

(11) t = (b 1 β 1 ) / S b 1

где b 1 – наклон прямой регрессии по выборочным данным, β1 – гипотетический наклон прямой генеральной совокупности, , а тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

Проверим, существует ли статистически значимая зависимость между размером магазина и годовым объемом продаж при α = 0,05. t -критерий выводится наряду с другими параметрами при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к t-статистике – на рис. 18.

Рис. 18. Результаты применения t

Поскольку число магазинов n = 14 (см. рис.3), критическое значение t -статистики при уровне значимости α = 0,05 можно найти по формуле: t L =СТЬЮДЕНТ.ОБР(0,025;12) = –2,1788, где 0,025 – половина уровня значимости, а 12 = n – 2; t U =СТЬЮДЕНТ.ОБР(0,975;12) = +2,1788.

Поскольку t -статистика = 10,64 > t U = 2,1788 (рис. 19), нулевая гипотеза Н 0 отклоняется. С другой стороны, р -значение для Х = 10,6411, вычисляемое по формуле =1-СТЬЮДЕНТ.РАСП(D3;12;ИСТИНА), приближенно равно нулю, поэтому гипотеза Н 0 снова отклоняется. Тот факт, что р -значение почти равно нулю, означает, что если бы между размерами магазинов и годовым объемом продаж не существовало реальной линейной зависимости, обнаружить ее с помощью линейной регрессии было бы практически невозможно. Следовательно, между средним годовым объемом продаж в магазинах и их размером существует статистически значимая линейная зависимость.

Рис. 19. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, и 12 степенях свободы

Применение F -критерия для наклона. Альтернативным подходом к проверке гипотез о наклоне простой линейной регрессии является использование F -критерия. Напомним, что F -критерий применяется для проверки отношения между двумя дисперсиями (подробнее см. ). При проверке гипотезы о наклоне мерой случайных ошибок является дисперсия ошибки (сумма квадратов ошибок, деленная на количество степеней свободы), поэтому F -критерий использует отношение дисперсии, объясняемой регрессией (т.е. величины SSR , деленной на количество независимых переменных k ), к дисперсии ошибок (MSE = S Y X 2 ).

По определению F -статистика равна среднему квадрату отклонений, обусловленных регрессией (MSR), деленному на дисперсию ошибки (MSE): F = MSR / MSE , где MSR = SSR / k , MSE = SSE /(n – k – 1), k – количество независимых переменных в регрессионной модели. Тестовая статистика F имеет F -распределение с k и n – k – 1 степенями свободы.

При заданном уровне значимости α решающее правило формулируется так: если F > F U , нулевая гипотеза отклоняется; в противном случае она не отклоняется. Результаты, оформленные в виде сводной таблицы дисперсионного анализа, приведены на рис. 20.

Рис. 20. Таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициента регрессии

Аналогично t -критерию F -критерий выводится в таблицу при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к F -статистике – на рис. 21.

Рис. 21. Результаты применения F -критерия, полученные с помощью Пакета анализа Excel

F-статистика равна 113,23, а р -значение близко к нулю (ячейка Значимость F ). Если уровень значимости α равен 0,05, определить критическое значение F -распределения с одной и 12 степенями свободы можно по формуле F U =F.ОБР(1-0,05;1;12) = 4,7472 (рис. 22). Поскольку F = 113,23 > F U = 4,7472, причем р -значение близко к 0 < 0,05, нулевая гипотеза Н 0 отклоняется, т.е. размер магазина тесно связан с его годовым объемом продаж.

Рис. 22. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, с одной и 12 степенями свободы

Доверительный интервал, содержащий наклон β 1 . Для проверки гипотезы о существовании линейной зависимости между переменными можно построить доверительный интервал, содержащий наклон β 1 и убедиться, что гипотетическое значение β 1 = 0 принадлежит этому интервалу. Центром доверительного интервала, содержащего наклон β 1 , является выборочный наклон b 1 , а его границами - величины b 1 ± t n –2 S b 1

Как показано на рис. 18, b 1 = +1,670, n = 14, S b 1 = 0,157. t 12 =СТЬЮДЕНТ.ОБР(0,975;12) = 2,1788. Следовательно, b 1 ± t n –2 S b 1 = +1,670 ± 2,1788 * 0,157 = +1,670 ± 0,342, или + 1,328 ≤ β 1 ≤ +2,012. Таким образом, наклон генеральной совокупности с вероятностью 0,95 лежит в интервале от +1,328 до +2,012 (т.е. от 1 328 000 до 2 012 000 долл.). Поскольку эти величины больше нуля, между годовым объемом продаж и площадью магазина существует статистически значимая линейная зависимость. Если бы доверительный интервал содержал нуль, между переменными не было бы зависимости. Кроме того, доверительный интервал означает, что каждое увеличение площади магазина на 1 000 кв. футов приводит к увеличению среднего объема продаж на величину от 1 328 000 до 2 012 000 долларов.

Использование t -критерия для коэффициента корреляции. был введен коэффициент корреляции r , представляющий собой меру зависимости между двумя числовыми переменными. С его помощью можно установить, существует ли между двумя переменными статистически значимая связь. Обозначим коэффициент корреляции между генеральными совокупностями обеих переменных символом ρ. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : ρ = 0 (нет корреляции), Н 1 : ρ ≠ 0 (есть корреляция). Проверка существования корреляции:

где r = + , если b 1 > 0, r = – , если b 1 < 0. Тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

В задаче о сети магазинов Sunflowers r 2 = 0,904, а b 1 - +1,670 (см. рис. 4). Поскольку b 1 > 0, коэффициент корреляции между объемом годовых продаж и размером магазина равен r = +√0,904 = +0,951. Проверим нулевую гипотезу, утверждающую, что между этими переменными нет корреляции, используя t -статистику:

При уровне значимости α = 0,05 нулевую гипотезу следует отклонить, поскольку t = 10,64 > 2,1788. Таким образом, можно утверждать, что между объемом годовых продаж и размером магазина существует статистически значимая связь.

При обсуждении выводов, касающихся наклона генеральной совокупности, доверительные интервалы и критерии для проверки гипотез являются взаимозаменяемыми инструментами. Однако вычисление доверительного интервала, содержащего коэффициент корреляции, оказывается более сложным делом, поскольку вид выборочного распределения статистики r зависит от истинного коэффициента корреляции.

Оценка математического ожидания и предсказание индивидуальных значений

В этом разделе рассматриваются методы оценки математического ожидания отклика Y и предсказания индивидуальных значений Y при заданных значениях переменной X .

Построение доверительного интервала. В примере 2 (см. выше раздел Метод наименьших квадратов ) регрессионное уравнение позволило предсказать значение переменной Y X . В задаче о выборе места для торговой точки средний годовой объем продаж в магазине площадью 4000 кв. футов был равен 7,644 млн. долл. Однако эта оценка математического ожидания генеральной совокупности является точечной. для оценки математического ожидания генеральной совокупности была предложена концепция доверительного интервала. Аналогично можно ввести понятие доверительного интервала для математического ожидания отклика при заданном значении переменной X :

где , = b 0 + b 1 X i – предсказанное значение переменное Y при X = X i , S YX – среднеквадратичная ошибка, n – объем выборки, X i - заданное значение переменной X , µ Y | X = X i – математическое ожидание переменной Y при Х = Х i , SSX =

Анализ формулы (13) показывает, что ширина доверительного интервала зависит от нескольких факторов. При заданном уровне значимости возрастание амплитуды колебаний вокруг линии регрессии, измеренное с помощью среднеквадратичной ошибки, приводит к увеличению ширины интервала. С другой стороны, как и следовало ожидать, увеличение объема выборки сопровождается сужением интервала. Кроме того, ширина интервала изменяется в зависимости от значений X i . Если значение переменной Y предсказывается для величин X , близких к среднему значению , доверительный интервал оказывается уже, чем при прогнозировании отклика для значений, далеких от среднего.

Допустим, что, выбирая место для магазина, мы хотим построить 95%-ный доверительный интервал для среднего годового объема продаж во всех магазинах, площадь которых равна 4000 кв. футов:

Следовательно, средний годовой объем продаж во всех магазинах, площадь которых равна 4 000 кв. футов, с 95% -ной вероятностью лежит в интервале от 6,971 до 8,317 млн. долл.

Вычисление доверительного интервала для предсказанного значения. Кроме доверительного интервала для математического ожидания отклика при заданном значении переменной X , часто необходимо знать доверительный интервал для предсказанного значения. Несмотря на то что формула для вычисления такого доверительного интервала очень похожа на формулу (13), этот интервал содержит предсказанное значение, а не оценку параметра. Интервал для предсказанного отклика Y X = Xi при конкретном значении переменной X i определяется по формуле:

Предположим, что, выбирая место для торговой точки, мы хотим построить 95%-ный доверительный интервал для предсказанного годового объема продаж в магазине, площадь которого равна 4000 кв. футов:

Следовательно, предсказанный годовой объем продаж в магазине, площадь которого равна 4000 кв. футов, с 95%-ной вероятностью лежит в интервале от 5,433 до 9,854 млн. долл. Как видим, доверительный интервал для предсказанного значения отклика намного шире, чем доверительный интервал для его математического ожидания. Это объясняется тем, что изменчивость при прогнозировании индивидуальных значений намного больше, чем при оценке математического ожидания.

Подводные камни и этические проблемы, связанные с применением регрессии

Трудности, связанные с регрессионным анализом:

  • Игнорирование условий применимости метода наименьших квадратов.
  • Ошибочная оценка условий применимости метода наименьших квадратов.
  • Неправильный выбор альтернативных методов при нарушении условий применимости метода наименьших квадратов.
  • Применение регрессионного анализа без глубоких знаний о предмете исследования.
  • Экстраполяция регрессии за пределы диапазона изменения объясняющей переменной.
  • Путаница между статистической и причинно-следственной зависимостями.

Широкое распространение электронных таблиц и программного обеспечения для статистических расчетов ликвидировало вычислительные проблемы, препятствовавшие применению регрессионного анализа. Однако это привело к тому, что регрессионный анализ стали применять пользователи, не обладающие достаточной квалификацией и знаниями. Откуда пользователям знать об альтернативных методах, если многие из них вообще не имеют ни малейшего понятия об условиях применимости метода наименьших квадратов и не умеют проверять их выполнение?

Исследователь не должен увлекаться перемалыванием чисел - вычислением сдвига, наклона и коэффициента смешанной корреляции. Ему нужны более глубокие знания. Проиллюстрируем это классическим примером, взятым из учебников. Анскомб показал, что все четыре набора данных, приведенных на рис. 23, имеют одни и те же параметры регрессии (рис. 24).

Рис. 23. Четыре набора искусственных данных

Рис. 24. Регрессионный анализ четырех искусственных наборов данных; выполнен с помощью Пакета анализа (кликните на рисунке, чтобы увеличить изображение)

Итак, с точки зрения регрессионного анализа все эти наборы данных совершенно идентичны. Если бы анализ был на этом закончен, мы потеряли бы много полезной информации. Об этом свидетельствуют диаграммы разброса (рис. 25) и графики остатков (рис. 26), построенные для этих наборов данных.

Рис. 25. Диаграммы разброса для четырех наборов данных

Диаграммы разброса и графики остатков свидетельствуют о том, что эти данные отличаются друг от друга. Единственный набор, распределенный вдоль прямой линии, - набор А. График остатков, вычисленных по набору А, не имеет никакой закономерности. Этого нельзя сказать о наборах Б, В и Г. График разброса, построенный по набору Б, демонстрирует ярко выраженную квадратичную модель. Этот вывод подтверждается графиком остатков, имеющим параболическую форму. Диаграмма разброса и график остатков показывают, что набор данных В содержит выброс. В этой ситуации необходимо исключить выброс из набора данных и повторить анализ. Метод, позволяющий обнаруживать и исключать выбросы из наблюдений, называется анализом влияния. После исключения выброса результат повторной оценки модели может оказаться совершенно иным. Диаграмма разброса, построенная по данным из набора Г, иллюстрирует необычную ситуацию, в которой эмпирическая модель значительно зависит от отдельного отклика (Х 8 = 19, Y 8 = 12,5). Такие регрессионные модели необходимо вычислять особенно тщательно. Итак, графики разброса и остатков являются крайне необходимым инструментом регрессионного анализа и должны быть его неотъемлемой частью. Без них регрессионный анализ не заслуживает доверия.

Рис. 26. Графики остатков для четырех наборов данных

Как избежать подводных камней при регрессионном анализе:

  • Анализ возможной взаимосвязи между переменными X и Y всегда начинайте с построения диаграммы разброса.
  • Прежде чем интерпретировать результаты регрессионного анализа, проверяйте условия его применимости.
  • Постройте график зависимости остатков от независимой переменной. Это позволит определить, насколько эмпирическая модель соответствует результатам наблюдения, и обнаружить нарушение постоянства дисперсии.
  • Для проверки предположения о нормальном распределении ошибок используйте гистограммы, диаграммы «ствол и листья», блочные диаграммы и графики нормального распределения.
  • Если условия применимости метода наименьших квадратов не выполняются, используйте альтернативные методы (например, модели квадратичной или множественной регрессии).
  • Если условия применимости метода наименьших квадратов выполняются, необходимо проверить гипотезу о статистической значимости коэффициентов регрессии и построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика.
  • Избегайте предсказывать значения зависимой переменной за пределами диапазона изменения независимой переменной.
  • Имейте в виду, что статистические зависимости не всегда являются причинно-следственными. Помните, что корреляция между переменными не означает наличия причинно-следственной зависимости между ними.

Резюме. Как показано на структурной схеме (рис. 27), в заметке описаны модель простой линейной регрессии, условия ее применимости и способы проверки этих условий. Рассмотрен t -критерий для проверки статистической значимости наклона регрессии. Для предсказания значений зависимой переменной использована регрессионная модель. Рассмотрен пример, связанный с выбором места для торговой точки, в котором исследуется зависимость годового объема продаж от площади магазина. Полученная информация позволяет точнее выбрать место для магазина и предсказать его годовой объем продаж. В следующих заметках будет продолжено обсуждение регрессионного анализа, а также рассмотрены модели множественной регрессии.

Рис. 27. Структурная схема заметки

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 792–872

Если зависимая переменная является категорийной, необходимо применять логистическую регрессию.

Регрессионный анализ лежит в основе создания большинства эконометрических моделей, к числу которых следует отнести и модели оценки стоимости. Для построения моделей оценки этот метод можно использовать, если количество аналогов (сопоставимых объектов) и количество факторов стоимости (элементов сравнения) соотносятся между собой следующим образом: п > (5 -г-10) х к, т.е. аналогов должно быть в 5-10 раз больше, чем факторов стоимости. Это же требование к соотношению количества данных и количества факторов распространяется и на другие задачи: установление связи между стоимостью и потребительскими параметрами объекта; обоснование порядка расчета корректирующих индексов; выяснение трендов цен; установление связи между износом и изменениями влияющих факторов; получение зависимостей для расчета нормативов затрат и т.п. Выполнение данного требования необходимо для того, чтобы уменьшить вероятность работы с выборкой данных, которая не удовлетворяет требованию нормальности распределения случайных величин.

Регрессионная связь отражает лишь усредненную тенденцию изменения результирующей переменной, например, стоимости, от изменения одной или нескольких факторных переменных, например, местоположения, количества комнат, площади, этажа и т.п. В этом заключается отличие регрессионной связи от функциональной, при которой значение результирующей переменной строго определено при заданном значении факторных переменных.

Наличие регрессионной связи / между результирующей у и факторными переменными х р ..., х к (факторами) свидетельствует о том, что эта связь определяется не только влиянием отобранных факторных переменных, но и влиянием переменных, одни из которых вообще неизвестны, другие не поддаются оценке и учету:

Влияние неучтенных переменных обозначается вторым слагаемым данного уравнения ?, которое называют ошибкой аппроксимации.

Различают следующие типы регрессионных зависимостей:

  • ? парная регрессия - связь между двумя переменными (результирующей и факторной);
  • ? множественная регрессия - зависимость одной результирующей переменной и двух или более факторных переменных, включенных в исследование.

Основная задача регрессионного анализа - количественное определение тесноты связи между переменными (при парной регрессии) и множеством переменных (при множественной регрессии). Теснота связи количественно выражается коэффициентом корреляции.

Применение регрессионного анализа позволяет установить закономерность влияния основных факторов (гедонистических характеристик ) на изучаемый показатель как в их совокупности, так и каждого из них в отдельности. С помощью регрессионного анализа, как метода математической статистики, удается, во-первых, найти и описать форму аналитической зависимости результирующей (искомой) переменной от факторных и, во-вторых, оценить тесноту этой зависимости.

Благодаря решению первой задачи получают математическую регрессионную модель, с помощью которой затем рассчитывают искомый показатель при заданных значениях факторов. Решение второй задачи позволяет установить надежность рассчитанного результата.

Таким образом, регрессионный анализ можно определить как совокупность формальных (математических) процедур, предназначенных для измерения тесноты, направления и аналитического выражения формы связи между результирующей и факторными переменными, т.е. на выходе такого анализа должна быть структурно и количественно определенная статистическая модель вида:

где у - среднее значение результирующей переменной (искомого показателя, например, стоимости, аренды, ставки капитализации) по п ее наблюдениям; х - значение факторной переменной (/-й фактор стоимости); к - количество факторных переменных.

Функция f(x l ,...,x lc), описывающая зависимость результирующей переменной от факторных, называется уравнением (функцией) регрессии. Термин «регрессия» (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться.

Регрессионный анализ в общем случае включает следующие этапы:

  • ? формирование выборки однородных объектов и сбор исходной информации об этих объектах;
  • ? отбор основных факторов, влияющих на результирующую переменную;
  • ? проверка выборки на нормальность с использованием х 2 или биноминального критерия;
  • ? принятие гипотезы о форме связи;
  • ? математическую обработку данных;
  • ? получение регрессионной модели;
  • ? оценку ее статистических показателей;
  • ? поверочные расчеты с помощью регрессионной модели;
  • ? анализ результатов.

Указанная последовательность операций имеет место при исследовании как парной связи между факторной переменной и одной результирующей, так и множественной связи между результирующей переменной и несколькими факторными.

Применение регрессионного анализа предъявляет к исходной информации определенные требования:

  • ? статистическая выборка объектов должна быть однородной в функциональном и конструктивно-технологическом отношениях;
  • ? достаточно многочисленной;
  • ? исследуемый стоимостной показатель - результирующая переменная (цена, себестоимость, затраты) - должен быть приведен к одним условиям его исчисления у всех объектов в выборке;
  • ? факторные переменные должны быть измерены достаточно точно;
  • ? факторные переменные должны быть независимы либо минимально зависимы.

Требования однородности и полноты выборки находятся в противоречии: чем жестче ведут отбор объектов по их однородности, тем меньше получают выборку, и, наоборот, для укрупнения выборки приходится включать в нее не очень схожие между собой объекты.

После того как собраны данные по группе однородных объектов, проводят их анализ для установления формы связи между результирующей и факторными переменными в виде теоретической линии регрессии. Процесс нахождения теоретической линии регрессии заключается в обоснованном выборе аппроксимирующей кривой и расчете коэффициентов ее уравнения. Линия регрессии представляет собой плавную кривую (в частном случае прямую), описывающую с помощью математической функции общую тенденцию исследуемой зависимости и сглаживающую незакономерные, случайные выбросы от влияния побочных факторов.

Для отображения парных регрессионных зависимостей в задачах по оценке чаще всего используют следующие функции: линейную - у - а 0 + арс + с степенную - у - aj&i + с показательную - у - линейно-показательную - у - а 0 + ар* + с. Здесь - е ошибка аппроксимации, обусловленная действием неучтенных случайных факторов.

В этих функциях у - результирующая переменная; х - факторная переменная (фактор); а 0 , а р а 2 - параметры регрессионной модели, коэффициенты регрессии.

Линейно-показательная модель относится к классу так называемых гибридных моделей вида:

где

где х (i = 1, /) - значения факторов;

b t (i = 0, /) - коэффициенты регрессионного уравнения.

В данном уравнении составляющие А, В и Z соответствуют стоимости отдельных составляющих оцениваемого актива, например, стоимости земельного участка и стоимости улучшений, а параметр Q является общим. Он предназначен для корректировки стоимости всех составляющих оцениваемого актива на общий фактор влияния, например, местоположение.

Значения факторов, находящихся в степени соответствующих коэффициентов, представляют собой бинарные переменные (0 или 1). Факторы, находящиеся в основании степени, - дискретные или непрерывные переменные.

Факторы, связанные с коэффициентами знаком умножения, также являются непрерывными или дискретными.

Спецификация осуществляется, как правило, с использованием эмпирического подхода и включает два этапа:

  • ? нанесение на график точек регрессионного поля;
  • ? графический (визуальный) анализ вида возможной аппроксимирующей кривой.

Тип кривой регрессии не всегда можно выбрать сразу. Для его определения сначала наносят на график точки регрессионного поля по исходным данным. Затем визуально проводят линию по положению точек, стремясь выяснить качественную закономерность связи: равномерный рост или равномерное снижение, рост (снижение) с возрастанием (убыванием) темпа динамики, плавное приближение к некоторому уровню.

Этот эмпирический подход дополняют логическим анализом, отталкиваясь от уже известных представлений об экономической и физической природе исследуемых факторов и их взаимовлияния.

Например, известно, что зависимости результирующих переменных - экономических показателей (цены, аренды) от ряда факторных переменных - ценообразующих факторов (расстояния от центра поселения, площади и др.) имеют нелинейный характер, и достаточно строго их можно описать степенной, экспоненциальной или квадратичной функциями. Но при небольших диапазонах изменения факторов приемлемые результаты можно получить и с помощью линейной функции.

Если все же невозможно сразу сделать уверенный выбор какой- либо одной функции, то отбирают две-три функции, рассчитывают их параметры и далее, используя соответствующие критерии тесноты связи, окончательно выбирают функцию.

В теории регрессионный процесс нахождения формы кривой называется спецификацией модели, а ее коэффициентов - калибровкой модели.

Если обнаружено, что результирующая переменная у зависит от нескольких факторных переменных (факторов) х { , х 2 , ..., х к, то прибегают к построению множественной регрессионной модели. Обычно при этом используют три формы множественной связи: линейную - у - а 0 + а х х х + а^х 2 + ... + а к х к, показательную - у - а 0 a *i а х т- а х ь, степенную - у - а 0 х х ix 2 a 2. .х^или их комбинации.

Показательная и степенная функции более универсальны, так как аппроксимируют нелинейные связи, каковыми и является большинство исследуемых в оценке зависимостей. Кроме того, они могут быть применены при оценке объектов и в методе статистического моделирования при массовой оценке, и в методе прямого сравнения в индивидуальной оценке при установлении корректирующих коэффициентов.

На этапе калибровки параметры регрессионной модели рассчитывают методом наименьших квадратов, суть которого состоит в том, что сумма квадратов отклонений вычисленных значений результирующей переменной у ., т.е. рассчитанных по выбранному уравнению связи, от фактических значений должна быть минимальной:

Значения j) (. и у. известны, поэтому Q является функцией только коэффициентов уравнения. Для отыскания минимума S нужно взять частные производные Q по коэффициентам уравнения и приравнять их к нулю:

В результате получаем систему нормальных уравнений, число которых равно числу определяемых коэффициентов искомого уравнения регрессии.

Положим, нужно найти коэффициенты линейного уравнения у - а 0 + арс. Сумма квадратов отклонений имеет вид:

/=1

Дифференцируют функцию Q по неизвестным коэффициентам а 0 и и приравнивают частные производные к нулю:

После преобразований получают:

где п - количество исходных фактических значений у их (количество аналогов).

Приведенный порядок расчета коэффициентов регрессионного уравнения применим и для нелинейных зависимостей, если эти зависимости можно линеаризовать, т.е. привести к линейной форме с помощью замены переменных. Степенная и показательная функции после логарифмирования и соответствующей замены переменных приобретают линейную форму. Например, степенная функция после логарифмирования приобретает вид: In у = 1пя 0 +а х 1пх. После замены переменных Y- In у, Л 0 - In а № X- In х получаем линейную функцию

Y=A 0 + cijX, коэффициенты которой находят описанным выше способом.

Метод наименьших квадратов применяют и для расчета коэффициентов множественной регрессионной модели. Так, система нормальных уравнений для расчета линейной функции с двумя переменными Xj и х 2 после ряда преобразований имеет следующий вид:

Обычно данную систему уравнений решают, используя методы линейной алгебры. Множественную степенную функцию приводят к линейной форме путем логарифмирования и замены переменных таким же образом, как и парную степенную функцию.

При использовании гибридных моделей коэффициенты множественной регрессии находятся с использованием численных процедур метода последовательных приближений.

Чтобы сделать окончательный выбор из нескольких регрессионных уравнений, необходимо проверить каждое уравнение на тесноту связи, которая измеряется коэффициентом корреляции, дисперсией и коэффициентом вариации. Для оценки можно использовать также критерии Стьюдента и Фишера. Чем большую тесноту связи обнаруживает кривая, тем она более предпочтительна при прочих равных условиях.

Если решается задача такого класса, когда надо установить зависимость стоимостного показателя от факторов стоимости, то понятно стремление учесть как можно больше влияющих факторов и построить тем самым более точную множественную регрессионную модель. Однако расширению числа факторов препятствуют два объективных ограничения. Во-первых, для построения множественной регрессионной модели требуется значительно более объемная выборка объектов, чем для построения парной модели. Принято считать, что количество объектов в выборке должно превышать количество п факторов, по крайней мере, в 5-10 раз. Отсюда следует, что для построения модели с тремя влияющими факторами надо собрать выборку примерно из 20 объектов с разным набором значений факторов. Во-вторых, отбираемые для модели факторы в своем влиянии на стоимостный показатель должны быть достаточно независимы друг от друга. Это обеспечить непросто, поскольку выборка обычно объединяет объекты, относящиеся к одному семейству, у которых имеет место закономерное изменение многих факторов от объекта к объекту.

Качество регрессионных моделей, как правило, проверяют с использованием следующих статистических показателей.

Стандартное отклонение ошибки уравнения регрессии (ошибка оценки):

где п - объем выборки (количество аналогов);

к - количество факторов (факторов стоимости);

Ошибка, необъясняемая регрессионным уравнением (рис. 3.2);

у. - фактическое значение результирующей переменной (например, стоимости); y t - расчетное значение результирующей переменной.

Этот показатель также называют стандартной ошибкой оценки {СКО ошибки ). На рисунке точками обозначены конкретные значения выборки, символом обозначена линия среднего значений выборки, наклонная штрихпунктирная линия - это линия регрессии.


Рис. 3.2.

Стандартное отклонение ошибки оценки измеряет величину отклонения фактических значений у от соответствующих расчетных значений у { , полученных с помощью регрессионной модели. Если выборка, на которой построена модель, подчинена нормальному закону распределения, то можно утверждать, что 68% реальных значений у находятся в диапазоне у ± & е от линии регрессии, а 95% - в диапазоне у ± 2d e . Этот показатель удобен тем, что единицы измерения сг? совпадают с единицами измерения у ,. В этой связи его можно использовать для указания точности получаемого в процессе оценки результата. Например, в сертификате стоимости можно указать, что полученное с использованием регрессионной модели значение рыночной стоимости V с вероятностью 95% находится в диапазоне от (V -2d,.) до + 2d s).

Коэффициент вариации результирующей переменной:

где у - среднее значение результирующей переменной (рис. 3.2).

В регрессионном анализе коэффициент вариации var представляет собой стандартное отклонение результата, выраженное в виде процентного отношения к среднему значению результирующей переменной. Коэффициент вариации может служить критерием прогнозных качеств полученной регрессионной модели: чем меньше величина var , тем более высокими являются прогнозные качества модели. Использование коэффициента вариации предпочтительнее показателя & е, так как он является относительным показателем. При практическом использовании данного показателя можно порекомендовать не применять модель, коэффициент вариации которой превышает 33%, так как в этом случае нельзя говорить о том, что данные выборки подчинены нормальному закону распределения.

Коэффициент детерминации (квадрат коэффициента множественной корреляции):

Данный показатель используется для анализа общего качества полученной регрессионной модели. Он указывает, какой процент вариации результирующей переменной объясняется влиянием всех включенных в модель факторных переменных. Коэффициент детерминации всегда лежит в интервале от нуля до единицы. Чем ближе значение коэффициента детерминации к единице, тем лучше модель описывает исходный ряд данных. Коэффициент детерминации можно представить иначе:

Здесь- ошибка, объясняемая регрессионной моделью,

а - ошибка, необъясняемая

регрессионной моделью. С экономической точки зрения данный критерий позволяет судить о том, какой процент вариации цен объясняется регрессионным уравнением.

Точную границу приемлемости показателя R 2 для всех случаев указать невозможно. Нужно принимать во внимание и объем выборки, и содержательную интерпретацию уравнения. Как правило, при исследовании данных об однотипных объектах, полученных примерно в один и тот же момент времени величина R 2 не превышает уровня 0,6-0,7. Если все ошибки прогнозирования равны нулю, т.е. когда связь между результирующей и факторными переменными является функциональной, то R 2 =1.

Скорректированный коэффициент детерминации:

Необходимость введения скорректированного коэффициента детерминации объясняется тем, что при увеличении числа факторов к обычный коэффициент детерминации практически всегда увеличивается, но уменьшается число степеней свободы (п - к - 1). Введенная корректировка всегда уменьшает значение R 2 , поскольку (п - 1) > {п- к - 1). В результате величина R 2 CKOf) даже может стать отрицательной. Это означает, что величина R 2 была близка к нулю до корректировки и объясняемая с помощью уравнения регрессии доля дисперсии переменной у очень мала.

Из двух вариантов регрессионных моделей, которые различаются величиной скорректированного коэффициента детерминации, но имеют одинаково хорошие другие критерии качества, предпочтительнее вариант с большим значением скорректированного коэффициента детерминации. Корректировка коэффициента детерминации не производится, если (п - к): к> 20.

Коэффициент Фишера:

Данный критерий используется для оценки значимости коэффициента детерминации. Остаточная сумма квадратов представляет собой показатель ошибки предсказания с помощью регрессии известных значений стоимости у.. Ее сравнение с регрессионной суммой квадратов показывает, во сколько раз регрессионная зависимость предсказывает результат лучше, чем среднее у . Существует таблица критических значений F R коэффициента Фишера, зависящих от числа степеней свободы числителя - к , знаменателя v 2 = п - к - 1 и уровня значимости а. Если вычисленное значение критерия Фишера F R больше табличного значения, то гипотеза о незначимости коэффициента детерминации, т.е. о несоответствии заложенных в уравнении регрессии связей реально существующим, с вероятностью р = 1 - а отвергается.

Средняя ошибка аппроксимации (среднее процентное отклонение) вычисляется как средняя относительная разность, выраженная в процентах, между фактическими и расчетными значениями результирующей переменной:

Чем меньше значение данного показателя, тем лучше прогнозные качества модели. При значении данного показателя не выше 7% говорят о высокой точности модели. Если 8 > 15%, говорят о неудовлетворительной точности модели.

Стандартная ошибка коэффициента регрессии:

где (/I) -1 .- диагональный элемент матрицы {Х Г Х)~ 1 к - количество факторов;

X - матрица значений факторных переменных:

X 7 - транспонированная матрица значений факторных переменных;

(ЖЛ) _| - матрица, обратная матрице.

Чем меньше эти показатели для каждого коэффициента регрессии, тем надежнее оценка соответствующего коэффициента регрессии.

Критерий Стьюдента (t-статистика):

Этот критерий позволяет измерить степень надежности (существенности) связи, обусловленной данным коэффициентом регрессии. Если вычисленное значение t . больше табличного значения

t av , где v - п - к - 1 - число степеней свободы, то гипотеза о том, что данный коэффициент является статистически незначимым, отвергается с вероятностью (100 - а)%. Существуют специальные таблицы /-распределения, позволяющие по заданному уровню значимости а и числу степеней свободы v определять критическое значение критерия. Наиболее часто употребляемое значение а равно 5%.

Мультиколлинеарность , т.е. эффект взаимных связей между факторными переменными, приводит к необходимости довольствоваться ограниченным их числом. Если это не учесть, то можно в итоге получить нелогичную регрессионную модель. Чтобы избежать негативного эффекта мультиколлинеарности, до построения множественной регрессионной модели рассчитываются коэффициенты парной корреляции r xjxj между отобранными переменными х. и х

Здесь XjX; - среднее значение произведения двух факторных переменных;

XjXj - произведение средних значений двух факторных переменных;

Оценка дисперсии факторной переменной х..

Считается, что две переменные регрессионно связаны между собой (т.е. коллинеарные), если коэффициент их парной корреляции по абсолютной величине строго больше 0,8. В этом случае какую-либо из этих переменных надо исключить из рассмотрения.

С целью расширения возможностей экономического анализа получаемых регрессионных моделей используются средние коэффициенты эластичности, определяемые по формуле:

где Xj - среднее значение соответствующей факторной переменной;

у - среднее значение результирующей переменной; a i - коэффициент регрессии при соответствующей факторной переменной.

Коэффициент эластичности показывает, на сколько процентов в среднем изменится значение результирующей переменной при изменении факторной переменной на 1 %, т.е. как реагирует результирующая переменная на изменение факторной переменной. Например, как реагирует цена кв. м площади квартиры на удаление от центра города.

Полезным с точки зрения анализа значимости того или иного коэффициента регрессии является оценка частного коэффициента детерминации:

Здесь - оценка дисперсии результирующей

переменной. Данный коэффициент показывает, на сколько процентов вариация результирующей переменной объясняется вариацией /-й факторной переменной, входящей в уравнение регрессии.

  • Под гедонистическими характеристиками понимаются характеристики объекта, отражающие его полезные (ценные) с точки зрения покупателей и продавцов свойства.

Метод регрессивного анализа применяется для определения технико-экономических параметров продукции, относящейся к конкретному параметрическому ряду, с целью построения и выравнивания ценностных соотношений. Этот метод используется для анализа и обоснования уровня и соотношений цен продукции, характеризующейся наличием одного или нескольких технико-экономических параметров, отражающих основные потребительские свойства. Регрессивный анализ позволяет найти эмпирическую формулу, описывающую зависимость цены от технико-экономических параметров изделий:

P=f(X1X2,...,Xn),

где Р - значение цены единицы изделия, руб.; (Х1, Х2, ... Хп) - технико-экономические параметры изделий.

Метод регрессивного анализа - наиболее совершенный из используемых нормативно-параметрических методов - эффективен при проведении расчетов на основе применения современных информационных технологий и систем. Применение его включает следующие основные этапы:

  • определение классификационных параметрических групп изделий;
  • отбор параметров, в наибольшей степени влияющих на цену изделия;
  • выбор и обоснование формы связи изменения цены при изменении параметров;
  • построение системы нормальных уравнений и расчет коэффициентов регрессии.

Основной квалификационной группой изделий, цена которых подлежит выравниванию, является параметрический ряд, внутри которого изделия могут группироваться по различному исполнению в зависимости от их применения, условий и требований эксплуатации и т. д. При формировании параметрических рядов могут быть применены методы автоматической классификации, которые позволяют из общей массы продукции выделять ее однородные группы. Отбор технико-экономических параметров производится исходя из следующих основных требований:

  • в состав отобранных параметров включаются параметры, зафиксированные в стандартах и технических условиях; помимо технических параметров (мощности, грузоподъемности, скорости и т.д.) используются показатели серийности продукции, коэффициенты сложности, унификации и др.;
  • совокупность отобранных параметров должна достаточно полно характеризовать конструктивные, технологические и эксплуатационные свойства изделий, входящих в ряд, и иметь достаточно тесную корреляционную связь с ценой;
  • параметры не должны быть взаимозависимы.

Для отбора технико-экономических параметров, существенно влияющих на цену, вычисляется матрица коэффициентов парной корреляции. По величине коэффициентов корреляции между параметрами можно судить о тесноте их связи. При этом близкая к нулю корреляция показывает незначительное влияние параметра на цену. Окончательный отбор технико-экономических параметров производится в процессе пошагового регрессивного анализа с использованием компьютерной техники и соответствующих стандартных программ.

В практике ценообразования применяется следующий набор функций:

линейная

P = ao + alXl + ... + antXn,

линейно-степенная

Р = ао + а1Х1 + ... + аnХп + (ап+1Хп) (ап+1Хп) +... + (ап+nХп2) (ап+nХп2)

обратного логарифма

Р = а0 + а1: In Х1 + ... + ап: In Xn,

степенная

P = a0 (X1^a1) (X2^a2) .. (Xn^an)

показательная

P = e^(а1+а1X1+...+аnХn)

гиперболическая

Р = ао + а1:Х1 + а2:Х2 + ... + ап:Хп,

где Р - выравнивание цены; X1 X2,..., Хп - значение технико-экономических параметров изделий ряда; a0, a1 ..., аn - вычисляемые коэффициенты уравнения регресии.

В практической работе по ценообразованию в зависимости от формы связи цен и технико-экономических параметров могут использоваться другие уравнения регрессии. Вид функции связи между ценой и совокупностью технико-экономических параметров может быть задан предварительно или выбран автоматически в процессе обработки на ЭВМ. Теснота корреляционной связи между ценой и совокупностью параметров оценивается по величине множественного коэффициента корреляции. Близость его к единице говорит о тесной связи. По уравнению регрессии получают выравненные (расчетные) значения цен изделий данного параметрического ряда. Для оценки результатов выравнивания вычисляют относительные величины отклонения расчетных значений цен от фактических:

Цр = Рф - Рр: Р х 100

где Рф, Рр - фактическая и расчетная цены.

Величина Цр не должна превышать 8-10%. В случае существенных отклонений расчетных значений от фактических необходимо исследовать:

  • правильность формирования параметрического ряда, так как в его составе могут оказаться изделия, по своим параметрам резко отличающиеся от других изделий ряда. Их надо исключить;
  • правильность отбора технико-экономических параметров. Возможна совокупность параметров, слабо коррелируемая с ценой. В этом случае необходимо продолжить поиск и отбор параметров.

Порядок и методика проведения регрессивного анализа, нахождения неизвестных параметров уравнения и экономическая оценка полученных результатов осуществляются в соответствии с требованиями математической статистики.

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.