Как найти начальную точку параболы. Парабола — свойства и график квадратичной функции

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

График функции y = ax 2 + bx + c, где a - первый коэффициент, b — второй коэффициент, c — свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0 .

Например, y =x 2 –8 x +15;

находим первый, второй коэффициенты и свободный член;

  • a =1, b =-8, c =15;

подставляем значения a и b в формулу;

  • x0=8/2=4;

вычисляем значения y;

  • y0 = 16–32+15 = -1;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n — корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x 2 –6x+5

1) Приравниваем к нулю:

  • x 2 –6x+5=0.

2) Находим дискриминант, используя формулу: D = b 2 –4 ac:

  • D =36–20=16.

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 — первый корень;
  • 5 — второй корень.

4) Вычисляем:

  • x0 =(5+1)/2=3

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2 +8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x 2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2) 2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

x 2 + 8x +16= 6.

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4) 2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина - точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f"(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f"(x) = (4x²+16x-17)’ = 8x+16 =0

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2 +11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

Правильно находите коэффициенты .

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео

Это видео поможет вам научиться находить вершину параболы

Не получили ответ на свой вопрос? Предложите авторам тему.

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Многие технические, экономические и социальные вопросы прогнозируются при помощи кривых. Наиболее используемым типом среди них является парабола, а точнее, ее половина. Важной составляющей любой параболической кривой является ее вершина, определение точных координат которой иногда играет ключевую роль не только в самом отображении протекания процесса, но и для последующих выводов. О том, как найти ее точные координаты, и пойдет речь в данной статье.

Вконтакте

Начало поиска

Перед тем как перейти к поиску координат вершины параболы, ознакомимся с самим определением и его свойствами. В классическом понимании параболой называется такое расположение точек, которые удалены на одинаковом расстоянии от конкретной точки (фокус, точка F), а также от прямой, которая не проходит через точку F. Рассмотрим данное определение более предметно на рисунке 1.

Рисунок 1. Классический вид параболы

На рисунке изображена классическая форма. Фокусом является точка F. Директрисой в данном случае будет считаться прямая оси Y (выделена красным цветом). Из определения можно удостовериться, что абсолютно любая точка кривой, не считая фокуса, имеет себе подобную с другой стороны, удаленную на таком же расстояние от оси симметрии, как и сама. Более того, расстояние от любой из точек на параболе равно расстоянию до директрисы . Забегая вперед, скажем, что центр функции не обязательно должен находиться в начале координат, а ветки могут быть направлены в разные стороны.

Парабола, как и любая другая функция, имеет свою запись в виде формулы:

В указанной формуле буква «s» обозначает параметр параболы, которая равна расстоянию от фокуса до директрисы. Также есть и другая форма записи, указано ГМТ, имеющая вид:

Такая формула используется при решении задач из области математического анализа и применяется чаще, чем традиционная (в силу удобства). В дальнейшем будем ориентироваться на вторую запись.

Это интересно! : доказательство

Расчет коэффициентов и основных точек параболы

К числу основных параметров принято относить расположение вершины на оси абсцисс, координаты вершины на оси ординат, параметр директрисы.

Численное значение координаты вершины на оси абсцисс

Если уравнение параболы задано в классическом виде (1), то значение абсциссы в искомой точке будет равняться половине значения параметра s (половине расстояния между директрисой и фокусом). В случае, если функция представлена в виде (2), то x нулевое рассчитывается по формуле:

Т.е., глядя на эту формулу, можно утверждать, что вершина будет находиться в правой половине относительно оси y в том случае, если один из параметров a или b будет меньше нуля.

Уравнение директрисы определяется следующим уравнением:

Значение вершины на оси ординат

Численное значение местонахождения вершины для формулы (2) на оси ординат можно найти по такой формуле:

Отсюда можно сделать вывод, что в случае если а<0, то вершина кривой будет находиться в верхней полуплоскости , в противном случае – в нижней. При этом точки параболы будут обладать теми же свойствами, что были упомянуты ранее.

Если дана классическая форма записи, то более рациональным будет вычисление значения расположения вершины на оси абсцисс, а через него и последующее значение ординаты. Отметим, что для формы записи (2), ось симметрии параболы, в классическом представлении, будет совпадать с осью ординат.

Важно! При решении заданий с использованием уравнения параболы прежде всего выделите основные значения, которые уже известны. Более того, нелишним будет, если будут определены недостающие параметры. Такой подход заранее даст большее «пространство для маневра» и более рациональное решение. На практике старайтесь использовать запись (2). Она более проста для восприятия (не придется «переворачивать координаты Декарта), к тому же подавляющее количество заданий приспособлено именно под такую форму записи.

Построение кривой параболического типа

Используя распространенную форму записи, перед тем как построить параболу, требуется найти ее вершину. Проще говоря, необходимо выполнить следующий алгоритм:

  1. Найти координату вершину на оси X.
  2. Найти координату расположения вершины на оси Y.
  3. Подставляя разные значения зависимой переменной X, найти соответствующие значения Y и построить кривую.

Т.е. алгоритм не представляет собой ничего сложного, основной акцент делается на том, как найти вершину параболы. Дальнейший процесс построения можно считать механическим.

При условии, что даны три точки, координаты которых известны, прежде всего необходимо составить уравнение самой параболы, а потом повторить порядок действий, который был описан ранее. Т.к. в уравнении (2) присутствуют 3 коэффициента, то, используя координаты точек, вычислим каждое из них:

(5.1).

(5.2).

(5.3).

В формулах (5.1), (5.2), (5.3) применяются соответственно тех точек, которые известны (к примеру А (, B (, C (. Таким путем находим уравнение параболы по 3 точкам. С практической стороны такой подход не является самым «приятным», однако он дает четкий результат, на основе которого впоследствии строится сама кривая.

При построении параболы всегда должна присутствовать ось симметрии. Формула оси симметрии для записи (2) будет иметь такой вид:

Т.е. найти ось симметрии, которой симметричны все точки кривой, не составляет труда. Точнее, она равна первой координате вершины.

Наглядные примеры

Пример 1. Допустим, имеем уравнение параболы:

Требуется найти координаты вершины параболы, а также проверить, принадлежит ли точка D (10; 5) данной кривой.

Решение: Прежде всего проверим принадлежность упомянутой точки самой кривой

Откуда делаем вывод, что указанная точка не принадлежит заданной кривой. Найдем координаты вершины параболы. Из формул (4) и (5) получаем такую последовательность:

Получается, что координаты на вершине, в точке О, следующие (-1,25; -7,625). Это говорит о том, что наша парабола берет свое начало в 3-й четверти декартовой системы координат.

Пример 2. Найти вершину параболы, зная три точки, которые ей принадлежат: A (2;3), B (3;5), C (6;2). Используя формулы (5.1), (5.2), (5.3), найдем коэффициенты уравнения параболы. Получим следующее:

Используя полученные значения, получим следующие уравнение:

На рисунке заданная функция будет выглядеть следующим образом (рисунок 2):

Рисунок 2. График параболы, проходящий через 3 точки

Т.е. график параболы, который проходит по трем заданным точкам, будет иметь вершину в 1-й четверти. Однако ветки данной кривой направлены вниз, т.е. имеется смещение параболы от начала координат. Такое построение можно было предвидеть, обратив внимание на коэффициенты a, b, c.

В частности, если a<0, то ветки» будут направлены вниз. При a>1 кривая будет растянута, а если меньше 1 – сжата.

Константа c отвечает за «движение» кривой вдоль оси ординат. Если c>0, то парабола «ползет» вверх , в противном случае – вниз. Относительно коэффициента b, то определить степень влияния можно лишь изменив форму записи уравнения, приведя ее к следующему виду:

Если коэффициент b>0, то координаты вершины параболы будут смещены вправо на b единиц, если меньше – то на b единиц влево.

Важно! Использование приемов определения смещения параболы на координатной плоскости подчас помогает экономить время при решении задач либо узнать о возможном пересечении параболы с другой кривой еще до построения. Обычно смотрят только на коэффициент a, так как именно он дает четкий ответ на поставленный вопрос.

Полезное видео: как найти вершину параболы

Полезное видео: как легко составить уравнение параболы из графика

Вывод

Такой как алгебраический процесс, как определение вершин параболы, не является сложным, но при этом достаточно трудоемкий. На практике стараются использовать именно вторую форму записи с целью облегчения понимания графического решения и решения в целом. Поэтому настоятельно рекомендуем использовать именно такой подход, и если не помнить формулы координаты вершины, то хотя бы иметь шпаргалку.

Нагаева Светлана Николаевна, учитель математики МАОУ « Лицей №1» города Березники.

Проект урока по алгебре в 9 классе (гуманитарный профиль).

«Наиболее глубокий след оставляет то, что человек открыл сам».(Д. Пойя.)

Тема урока: «Вывод формул для вычисления координат вершины параболы».

Цели урока : познавательные :

Ожидаемый результат:

- осознание, принятие и разрешение проблемы учащимися;

Формирование способов получения новых знаний через сравнение и сопоставления фактов, способа от частного к общему;

Узнают формулы нахождения координат вершины и оси симметрии параболы для функций вида y = ax 2 +bx+c.

Тип урока: урок постановки учебной задачи. Методы обучения – наглядно-иллюстративный, словесный, обучение в сотрудничестве, проблемный, элементы технологии критического мышления.

Оборудование: компьютер, мультимедийный проектор, демонстрационный экран, слайды презентации по теме: «Формулы для нахождения координат вершины параболы»; листы формата А3; цветные маркеры.

Технология - системно-деятельностный подход.

Этапы урока:

    Психологический настрой(мотивация).

    Актуализация опорных знаний(создание ситуации успеха).

    Постановка проблемы.

    Формулирование темы и цели урока.

    Решение проблемы.

    Анализ хода решения проблемы.

    Применение результатов решения проблемы в последующей деятельности.

    Подведение итогов урока (итог «глазами» ученика, итог «глазами» учителя.).

    Домашнее задание.

Ход урока:

    Психологический настрой.

Задача: Учится решать общую задачу и работать в коллективе(работа в группах по 5 чел.).

Ребята, на протяжении последних четырёх уроков мы занимались изучением квадратичной функции, но знания наши пока ещё не совсем полные, поэтому мы продолжаем изучать квадратичную функцию с целью узнать что-то новое об этой функции.

Мотивация учащихся к самостоятельной постановке темы и цели урока.

Функция
и ее график.

;
;

Не выполняя построения графика функций, можем ли мы ответить на вопросы:

    Что является графиком функций?

    Какая прямая является осью симметрии (если она существует)?

3. Есть ли вершина, каковы её координаты?

Хочу узнать

Таблица заполняется по ходу проведения урока.

    Актуализация опорных знаний и умений учащихся. Разминка. 1. Вынести за скобки старший коэффициент: 5x 2 + 25x -5; ax 2 + bx + c. 2.Выделить удвоенное произведение: ab; ax; b/a. 3.Возвести в квадрат: b/2; c 2 /a; 2a/3b. 4.Представить в виде алгебраической суммы: а – в; x –(- b/2a).

Объясните, как, зная вид графика функции y =ƒ( x ) , построить графики функций:

а) y =ƒ(x - a ) , - с помощью параллельного переноса на а единиц вправо вдоль оси х ;

б) y =ƒ(x ) + b , - с помощью параллельного переноса на b единиц вверх вдоль оси y ;

в) y =ƒ(x - а) + b , ↔ на а единиц, ↕ на b единиц;

г) Как построить график функции y = (x - 2) 2 + 3 ? Что является ее графиком?

Назовите вершину параболы.
Графиком является парабола y = x 2 с вершиной в точке (2; 3).

Назовите координаты вершины параболы: y =x- 4x + 5 ( проблема). Почему нельзя определить координаты вершины параболы по виду функции? (другой вид имеет квадратичная функция).

Деятельность учащихся:

Строят речевые конструкции с использованием функциональной терминологии.

Обсуждение ответов. Сравнивают, сопоставляют с ранее изученными функциями, выбирают и записывают на доске знания и умения, которые им могут понадобиться для решения проблемы в столбик «ЗНАЮ»:

2.

3.

4.

В столбик «Хочу узнать»:вершину, ось симметрии параболы
.

Учащиеся могут записывать в столбики «ЗНАЮ» и «ХОЧУ ЗНАТЬ» функции как в общем виде, так и частные случаи. Постановка учебной задачи: найти координаты вершины параболы, если квадратичная функция задана в общем виде y = ax+ bx + c . Учащиеся формулируют и записывают в тетрадь тему и цель урока. (Вывод формул для вычисления координат вершины параболы. Научиться находить координаты вершины параболы новым способом – по формулам).

Решение проблемы.

Деятельность учащихся: Сравнивая «старые» знания с новыми знаниями учащиеся предлагают выделить полный квадрат. На конкретных примерах
;
и получают соответственно
;
. Находят координаты вершины и уравнение оси симметрии, Понимают, что с задачей справились, т.к. привели новую функцию к знакомому виду.

Учащиеся выделяют полный квадрат для функции
; , сравнивают полученный результат, делают вывод по данной функции. Находят координаты вершины и ось симметрии.

Сможете ли вы назвать вершину и ось параболы, если функция задана в общем виде
, не выделяя полного квадрата? Как вы будете действовать в этом случае? И как применить ваш предыдущий опыт по нахождению вершины и оси параболы?

Деятельность учащихся:

Опираясь на уже имеющиеся знания, опыт учащиеся начинают понимать, что нужно идти дальше, от частного к общему, проводят доказательства в общем виде.

Появляются новые затруднения. В группах появляется решение: . Анализ хода решения проблемы. Заслушивается один представитель от каждой группы.

Сравнивают, анализируют записи
и
, записывается в тетрадь одно общее решение поставленной задачи - формулы координат вершины параболы
.

Учащиеся делают вывод: координаты вершины и ось параболы для функции
можно найти рациональным способом.

Применение результатов по решению проблемы в последующей деятельности.

Деятельность учащихся:

Решение заданий из учебника №121; 123. Найдите координаты вершины параболы новым рациональным способом. Запишите уравнение прямой, которая является осью симметрии параболы.

Подведение итогов (рефлексия учебной деятельности на уроке).

Вернемся к таблице и заполним столбик «УЗНАЛ».

Итог урока «глазами» учащихся:

ХОЧУ УЗНАТЬ

2.

3.

4.

5. знаю, как построить графики этих функций

6. знаю, как найти координаты вершины этих парабол и ось параболы

7. метод выделения полного квадрата

8. как находить координаты вершин, ось параболы.


2. уравнение оси симметрии параболы

1. координаты вершины параболы

2 .как вывести формулу

3. рациональный способ нахождения оси параболы и координат вершины параболы

Итог « глазами учителя»:

    Цель урока достигнута.

    Учащиеся осознали, приняли и разрешили возникшую проблему.

    В процессе решения учебно-проблемной задачи учащиеся не только приобрели новые знания: зависимость коэффициентов квадратного трехчлена и координат вершины параболы, уравнения оси симметрии, но самое главное на уроке – формирование обобщенных способов приобретения новых знаний, самостоятельного анализа проблемы и нахождения неизвестного.

Домашнее задание : п.7 №122 ;127(б) ;128.

P.S. Представленный урок проведен 15 октября 2014 года в рамках городского семинара учителей математики по теме «Формирование УУД на уроках математики».

На этапе «Применение результатов…» при решении заданий из учебника некоторые учащиеся начали понимать ценность своего «открытия»: более простого способа нахождения координат вершины и уравнения оси симметрии, а другие не скрывали радости, ведь не надо «мучаться» с выделением полного квадрата. Но самое главное – сделали все сами!